Stochastic Partial Differential Equations and Infinite Dimensional Analysis

Michael Röckner

joint work (several papers) with:

Viorel Barbu, Vladimir I. Bogachev, Giuseppe Da Prato, Zeev Sobol, Feng-Yu Wang

Ref.: BiBoS-Preprint Server, my homepage at Purdue University (BiBoS = Bielefeld-Bonn-Stochastics Research Centre)

A – From ODE to PDE

in finitely many variables

ODE

(1)
$$dX_t^x = B(X_t^x) dt$$

$$X_0^x = x \in \mathbb{R}^d$$
on \mathbb{R}^d

$$X_t^x = x + \int_0^t B(X_s^x) ds$$

$$\Rightarrow p_t f(x) := f(X_t^x)$$

$$p_0 f = f \text{ for } f : \mathbb{R}^d \to \mathbb{R}$$

semigroup $(p_{t+s}f(x) = p_t(p_s f)(x))$ by flow property

solves PDE(2)

A – ODE to PDE, finite dimensional

1b

$$\Rightarrow p_t f(x) := f(X_t^x)$$

$$p_0 f = f \text{ for } f : \mathbb{R}^d \to \mathbb{R}$$

semigroup $(p_{t+s}f(x) = p_t(p_sf)(x))$ by flow property

solves PDE

(2)
$$\frac{\partial}{\partial t} p_t f(x) = \sum_{i=1}^d B^i(x) \cdot \frac{\partial}{\partial e_i} p_t f(x)$$

of (1)

(1)
$$= B(x) \cdot \nabla_{x} p_{t} f(x)$$
$$=: L(p_{t} f)(x)$$
$$\uparrow$$
"generator"

Here
$$B = (B^1, \dots, B^d) : \mathbb{R}^d \to \mathbb{R}^d$$
 and $e_i = (0, \dots, 1, \dots, 0)$ canonical basis

ODE

(1)
$$dX_t^x = B(X_t^x) dt$$

$$X_0^x = x \in \mathbb{R}^d$$
on \mathbb{R}^d

$$X_t^x = x + \int_0^t B(X_s^x) ds$$

$$\Rightarrow p_t f(x) := f(X_t^x)$$

$$p_0 f = f \text{ for } f : \mathbb{R}^d \to \mathbb{R}$$

semigroup $(p_{t+s}f(x) = p_t(p_sf)(x))$ by flow property

solves PDE(2)

SODE

(1)
$$dX_t^x = B(X_t^x) dt + dW_t$$

$$X_0^x = x \in \mathbb{R}^d$$
on \mathbb{R}^d

$$X_t^x(\omega) = x + \int_0^t B(X_s^x(\omega)) ds + \underbrace{W_t(\omega)}_{\text{Brownian motion on } \mathbb{R}^d}$$

Kolmogorov
$$p_t f(x) := \int f(X_t^x(\omega)) \mathbb{P}(\mathrm{d}\omega) =: \mathbb{E}[f(X_t^x)]$$
 semigroup $(p_{t+s} f(x) = p_t(p_s f)(x))$ by Howeproperty
$$p_0 f = f \quad \text{for } f: \mathbb{R}^d \to \mathbb{R}$$

semigroup Markov property

solves **PDE** (2) (heat equation in finitely many variables)

A - ODE to PDE, finite dimensional

$$\Rightarrow p_t f(x) := f(X_t^x)$$

$$p_0 f = f \text{ for } f : \mathbb{R}^d \to \mathbb{R}$$

semigroup $(p_{t+s}f(x) = p_t(p_sf)(x))$ by flow property

solves PDE

(2)
$$\frac{\partial}{\partial t} p_t f(x) = \sum_{i=1}^d B^i(x) \cdot \frac{\partial}{\partial e_i} p_t f(x)$$

(2)
$$= B(x) \cdot \nabla_{x} p_{t} f(x)$$

$$=: L(p_{t} f)(x)$$

$$\uparrow$$
"generator"
of (1)

Here
$$B = (B^1, \dots, B^d) : \mathbb{R}^d \to \mathbb{R}^d$$
 and $e_i = (0, \dots, 1, \dots, 0)$ canonical basis

A - SODE to PDE, finite dimensional

Kolmogorov
$$p_t f(x) := \int f(X_t^x(\omega)) \mathbb{P}(d\omega) =: \mathbb{E}[f(X_t^x)]$$

$$p_0 f = f \quad \text{for } f: \mathbb{R}^d \to \mathbb{R}$$

semigroup $\begin{pmatrix}
p_{t+s}f(x) = p_t(p_s f)(x) \\
\text{by flowxproxenty} \\
\text{Markov property}
\end{pmatrix}$

solves PDE (heat equation in finitely many variables)

(2)
$$\frac{\partial}{\partial t} p_t f(x) \stackrel{\text{Itô}}{=} \sum_{i=1}^d B^i(x) \cdot \frac{\partial}{\partial e_i} p_t f(x) + \frac{1}{2} \sum_{i=1}^d \frac{\partial^2}{\partial e_i \partial e_i} p_t f(x)$$

(3)
$$= B(x) \cdot \nabla_{x} p_{t} f(x) + \frac{1}{2} \Delta_{x} p_{t} f(x)$$
$$=: L(p_{t} f)(x)$$

$$\uparrow$$
"generator"
of (1)

Here
$$B = (B^1, \dots, B^d) : \mathbb{R}^d \to \mathbb{R}^d$$
 and $e_i = (0, \dots, 1, \dots, 0)$ canonical basis

Itô:

$$p_{t}f(x) = E[f(X_{t}^{x})]$$

$$= f(x) + \sum_{i=1}^{d} \underbrace{E\left[\int_{0}^{t} \left(\frac{\partial}{\partial e_{i}}f\right)(X_{s}^{x}) \ dW_{s}^{i}\right]}_{=0} + \sum_{i=1}^{d} \int_{0}^{t} \underbrace{E\left[\left(\frac{\partial}{\partial e_{i}}f\right)(X_{s}^{x}) \ B^{i}(X_{s}^{x})\right] ds}_{p_{s}\left(\left(\frac{\partial}{\partial e_{i}}f\right)B^{i}\right)(x)ds}$$

$$+ \frac{1}{2} \sum_{i,j=1}^{d} \int_{0}^{t} \underbrace{E\left[\left(\frac{\partial^{2}}{\partial e_{i}\partial e_{j}}f\right)(X_{s}^{x}) \ \underbrace{\langle dW_{s}^{i}, dW_{s}^{j}\rangle_{\mathbb{R}^{d}}}_{=\delta_{ij}ds}\right]}_{=p_{s}\left(\frac{\partial^{2}}{\partial e_{i}\partial e_{j}}f\right)(x) \ \delta_{ij}ds}$$

$$= f(x) + \int_{0}^{t} \underbrace{p_{s}(Lf)(x)}_{L(p_{s}f)(x)} ds$$

SODE

(1)
$$dX_t^x = B(X_t^x) dt + dW_t$$

$$X_0^x = x \in \mathbb{R}^d$$
on \mathbb{R}^d

$$X_t^x(\omega) = x + \int_0^t B(X_s^x(\omega)) ds + \underbrace{W_t(\omega)}_{\text{Brownian motion on } \mathbb{R}^d}$$

Kolmogorov
$$p_t f(x) := \int f(X_t^x(\omega)) \mathbb{P}(\mathrm{d}\omega) =: \mathbb{E}[f(X_t^x)]$$
 semigroup $(p_{t+s} f(x) = p_t(p_s f)(x))$ by Howeproperty
$$p_0 f = f \quad \text{for } f: \mathbb{R}^d \to \mathbb{R}$$

semigroup Markov property

solves **PDE** (2) (heat equation in finitely many variables)

SODE

(1)
$$dX_t^x = B(X_t^x) dt + \sigma(X_t^x) dW_t$$

$$X_0^x = x \in \mathbb{R}^d$$
on \mathbb{R}^d

$$X_t^x(\omega) = x + \int_0^t B(X_s^x(\omega)) ds + \int_0^t \sigma(X_s^x(\omega)) dW_s(\omega)$$
Brownian motion on \mathbb{R}^d

Kolmogorov
$$p_t f(x) := \int f(X_t^x(\omega)) \mathbb{P}(\mathrm{d}\omega) =: \mathbb{E}[f(X_t^x)]$$
 semigroup $(p_{t+s} f(x) = p_t(p_s f)(x))$ by Howeproperty
$$p_0 f = f \quad \text{for } f: \mathbb{R}^d \to \mathbb{R}$$

semigroup Markov property

solves **PDE** (2) (heat equation in finitely many variables)

Kolmogorov
$$p_t f(x)$$

Kolmogorov
$$p_t f(x) := \int f\left(X_t^x(\omega)\right) \mathbb{P}(\mathrm{d}\omega) =: \mathbb{E}\left[f(X_t^x)\right] \qquad \text{semigroup} \\ \left(p_{t+s} f(x) = p_t(p_s f)(x)\right) \\ p_0 f = f \quad \text{for } f: \mathbb{R}^d \to \mathbb{R} \qquad \text{by flower property}$$

semigroup by flowx promentx Markov property

solves **PDE** (heat equation in finitely many variables)

(2)
$$\frac{\partial}{\partial t} p_t f(x) \stackrel{\text{Itô}}{=} \sum_{i=1}^d B^i(x) \cdot \frac{\partial}{\partial e_i} p_t f(x) + \frac{1}{2} \sum_{i=1}^d \frac{\partial^2}{\partial e_i \partial e_i} p_t f(x)$$
(4)
$$= B(x) \cdot \nabla_x p_t f(x) + \frac{1}{2} \text{Tr}(D^2 p_t f(x))$$

$$=: L(p_t f)(x)$$

$$\uparrow \text{"generator"} \text{of (1)}$$

Here
$$B = (B^1, \dots, B^d) : \mathbb{R}^d \to \mathbb{R}^d$$
 and $e_i = (0, \dots, 1, \dots, 0)$ canonical basis

Kolmogorov
$$p_t f(x) := \int f\left(X_t^x(\omega)\right) \mathbb{P}(\mathrm{d}\omega) =: \mathbb{E}\left[f(X_t^x)\right] \qquad \text{semigroup} \\ \left(p_{t+s} f(x) = p_t(p_s f)(x)\right) \\ p_0 f = f \quad \text{for } f: \mathbb{R}^d \to \mathbb{R}$$
 by Newsproperty

semigroup by flowx bronxentx Markov property

solves **PDE** (heat equation in finitely many variables)

(2)
$$\frac{\partial}{\partial t} p_t f(x) \stackrel{\text{Itô}}{=} \sum_{i=1}^d B^i(x) \cdot \frac{\partial}{\partial e_i} p_t f(x) + \frac{1}{2} \sum_{i,j=1}^d \left(\sigma^T(x) \sigma(x) \right)^{ij} \cdot \frac{\partial^2}{\partial e_i \partial e_j} p_t f(x)$$
(5)
$$= B(x) \cdot \nabla_x p_t f(x) + \frac{1}{2} \text{Tr}(\sigma^T(x) \sigma(x) D^2 p_t f(x))$$

$$=: L(p_t f)(x)$$

$$\uparrow \text{"generator"} \text{of (1)}$$

Here
$$B = (B^1, \dots, B^d) : \mathbb{R}^d \to \mathbb{R}^d$$
 and $e_i = (0, \dots, 1, \dots, 0)$ canonical basis i^{th}

and
$$\sigma = (\sigma^{ij}) : \mathbb{R}^d \to \underbrace{M(d \times d)}_{d \times d\text{-matrices}}$$

[Levy-Wiener-Ciesielski]

First ingredient: Haarbasis of $L^2([0,1], dt)$:

 $f_{0.0} \equiv 1$, and for $n \in \mathbb{N}$, $0 < k < 2^n$, k odd,

 $(f_{n,k})_{\substack{0 < k < 2^n, k \text{ odd} \\ n \in \mathbb{N}}}$ is ONB of $L^2([0,1], dt)$

Second ingredient: Standard normal distribution on \mathbb{R}^{∞}

Standard normal distribution on \mathbb{R}^1 :

$$\gamma(\mathrm{d}x) := \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}} \, \mathrm{d}x$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Causs
$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Lebesgue meas.
$$\uparrow \qquad \qquad \qquad \qquad \downarrow$$

$$\uparrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Lebesgue meas.

Set $\gamma_{n,k} := \gamma$.

$$\mathbb{P} := \bigotimes_{\substack{0 < k < 2^n \\ k \text{ odd} \\ n \in \mathbb{N}}} \gamma_{n,k} \quad \text{product measure on } \mathbb{R}^{\infty} \left(= \mathbb{R}^{\{(n,k)|\dots\}} \right)$$

Define $\xi_{n,k}: \mathbb{R}^{\{(n,k)|n\in\mathbb{N}, 0< k<2^n, k \text{ odd}\}\cup\{(0,0)\}} \to \mathbb{R}$ (projection) and for $t\in[0,1]$

$$W_t(\omega) := \sum_{(n,k)} \xi_{n,k}(\omega) \int_0^t f_{n,k}(s) ds$$
 converges for \mathbb{P} -a.e. $\omega \in \mathbb{R}^{\infty}$

Brownian motion on \mathbb{R}^1

B – From SODE to PDE

in infinitely many variables

SODE in E

(1)
$$dX_t^x = B(X_t^x) dt + \sigma(X_t^x) dW_t$$

$$\uparrow \\ \text{Brownian motion} \\ \text{on } E$$

$$X_0^x = x \in E := \text{ separable Hilbert space } \left(= L^2(\mathbb{R}^m, dx), \quad H^k(\mathbb{R}^m, dx), \dots \right)$$

$$\uparrow \\ \text{inner} \\ \text{product } \langle \ , \ \rangle$$

$$Lebesgue \\ \text{measure space}$$

$$p_t f(x) := \int_{\Omega} f(X_t^x(\omega)) \mathbb{P}(d\omega) , \qquad p_0 f = f, \quad \text{for } f : E \to \mathbb{R}$$

solves PDE (2) (heat equation in infinitely many variables)

$$p_t f(x) := \int_{\Omega} f(X_t^x(\omega)) \mathbb{P}(d\omega), \qquad p_0 f = f, \quad \text{for } f : E \to \mathbb{R}$$

solves **PDE** (heat equation in infinitely many variables)

(2)
$$\frac{\partial}{\partial t} p_t f(x) = \sum_{i=1}^{\infty} \langle B(x), e_i \rangle \frac{\partial}{\partial e_i} p_t f(x) + \frac{1}{2} \sum_{i,j=1}^{\infty} \langle \underbrace{\sigma^T(x) \sigma(x)}_{=:A(x)} e_i, e_j \rangle \frac{\partial^2}{\partial e_i \partial e_j} p_t f(x) \text{ (heuristically!)}$$

$$=: L(p_t f)(x).$$

$$\uparrow$$
"generator"

Here $B: E \to E$ and $\{e_i \mid i \in \mathbb{N}\}$ ONB of E and

$$\begin{array}{c} \sigma: E \to L(E) \\ & \uparrow \\ \text{(bounded) linear operators} \\ \text{on } E \end{array}$$

For simplicity $A(x) = \sigma^T(x)\sigma(x) = A$ independent of $x \in E$. So, have:

(1)
$$dX_t = B(X_t)dt + \sqrt{A}dW_t \leftarrow \text{B.M. on } E$$

$$X_0 = x \in E = \text{sep. Hilbert space with } \langle , \rangle$$

Associated generator (Kolmogorov operator)

$$L\varphi(x) = \sum_{i=1}^{N} \langle B(x), e_i \rangle \frac{\partial \varphi}{\partial e_i}(x) + \frac{1}{2} \sum_{i,j=1}^{N} \langle Ae_i, e_j \rangle \frac{\partial^2}{\partial e_i \partial e_j} \varphi(x)$$

$$= \langle B(x), D\varphi(x) \rangle + \frac{1}{2} \operatorname{Tr}(AD^2 \varphi(x))$$
Fréchet derivatives

for
$$x \in E$$
 and $\varphi = g(\langle e_1, \cdot \rangle, \dots, \langle e_N, \cdot \rangle) \leftarrow \text{all such } \mathcal{F}C_b^2$

$$\in C_b^2(\mathbb{R}^N) \qquad \in \mathbb{N} \text{ arbitrary}$$

Altogether:

(1)
$$dX_t = B(X_t)dt + \sqrt{A} dW_t$$
$$X_0 = x \in E$$

Associated generator (Kolmogorov operator)

$$L\varphi(x) = \sum_{i=1}^{N} \langle B(x), e_i \rangle \frac{\partial \varphi}{\partial e_i}(x) + \frac{1}{2} \sum_{i,j=1}^{N} \langle Ae_i, e_j \rangle \frac{\partial^2}{\partial e_i \partial e_j} \varphi(x)$$
$$= \langle B(x), D\varphi(x) \rangle + \frac{1}{2} \operatorname{Tr}(AD^2 \varphi(x))$$

for $x \in E$ and $\varphi = g(\langle e_1, \cdot \rangle, \dots, \langle e_N, \cdot \rangle) : E \to \mathbb{R}$.

The associated heat equation is also called **Kolmogorov** (backward) **equation**

(2)
$$\frac{\partial}{\partial t}u(t,x) = Lu(t,x), \quad u(0,\cdot) = f,$$

where $f: E \to \mathbb{R}$.

Want to solve (2), then (1)!

Once (2) is solved one has to apply highly developed machinery to get solution of (1). In this talk we concentrate on solving (2):

Two approaches to solve (2) will be presented:

- L^p -approach
- Weighted function space (=WFS -) approach

C – Two stochastic PDE as examples

- (a) Porous media equation (L^p -approach)
- (b) Stochastic Navier–Stokes equation, d = 2 (WFS-approach)

(a) Stochastic porous media equation $(L^p$ -approach)

with Dirichlet boundary conditions $dX_t = \underbrace{\Delta\Psi(X_t)}_{B(X_t)} dt + \sqrt{A} dW_t \quad \text{with } \Psi : \mathbb{R} \to \mathbb{R}$

on $E := H^{-1}(\Lambda)$, $\Lambda \subset \mathbb{R}^d$, open; so,

$$L\varphi(x) = \langle \Delta \Psi(x), D\varphi(x) \rangle + \frac{1}{2} \text{Tr} A D^2 \varphi(x), \quad x \in H^{-1}(\Lambda), \quad \text{for } \varphi : H^{-1}(\Lambda) \to \mathbb{R}.$$

Remark:

- (i) $A \equiv 0$: enormous literature.
- (ii) A ≠ 0: first papers [Da Prato / R.: JEE '04], [Barbu / Bogachev/Da Prato/R.: JFA '06] Subsequently, many others. Mainly, on SPDE, not on Kolmogorov equations: Kim, Wu, Zhang, ...
 Among most recent: Da Prato / R. / Rosewski / Wang: Comm. P.D. E. '06]. [Rep. / Recent | P.D. E. '06].

Among most recent: Da Prato/R./Rosowski/Wang: Comm. P.D.E. '06], [Ren/R./Wang: BiBos-preprint '06].

(c) Stochastic Navier–Stokes equation, d = 2 (WFS-approach)

$$E := \left\{ x \in L^2(\Lambda \to \mathbb{R}^2, dx) \mid \underbrace{\text{div } x}_{\text{in the sense of distributions}} = 0 \right\},$$

 $\Lambda \subset \mathbb{R}^2$, open, bounded, $\partial \Lambda$ smooth; so,

on

$$L\varphi(x) = \langle \nu \Delta_s x - \langle x, \nabla \rangle_{\mathbb{R}^2} x, D\varphi(x) \rangle_E, +\frac{1}{2} \text{Tr } AD^2 \varphi(x), \quad x \in E, \quad \text{for } \varphi : E \to \mathbb{R}.$$

Remark:

- (i) $A \equiv 0$: OVERWHELMING literature
- (ii) $A \not\equiv 0$: on SPDE: OVERWHELMING literature $A \not\equiv 0$: on Kolmogorov equations: Da Prato/Debussche (also d=3!), Barbu, Flandoli, Gozzi,...
 WFS-approach: [R./Sobol: Ann. Prob. '06] for d=1., [R./Sobol: Preprint '06] for d=2 and also for geostrophic equation
- (iii) Existence of infinitesimally invariant measures also proved for $d \ge 2$: [Bogachev / R.: PTRF '00]

D - Strategies to solve

the Kolmogorov equation

to solve

(2)
$$\frac{\partial}{\partial t}u(t,x) = Lu(t,x), \qquad u(0,\,\cdot\,) = f.$$

semigroup approach!

Construct

$$e^{tL} f(x) =: u(t, x), \qquad t \ge 0.$$

If e^{tL} exists, then by operator calculus

$$(\lambda - L)^{-1} = \int_0^\infty e^{-\lambda t} e^{tL} dt, \, \lambda > \lambda_0.$$

So, try to construct $(\lambda - L)^{-1}$, $\lambda > \lambda_0$, and invert Laplace transform, (well-known method: "Hille-Yosida Theorem").

For implementation two major steps necessary:

Step 1

Show "dissipativity", i.e.

$$\|(\lambda - L)\varphi\|_{W(E)} \ge (\lambda - \lambda_0)\|\varphi\|_{W(E)} \quad \forall \varphi \in \mathcal{F}C_b^2, \quad \lambda > \lambda_0,$$

for suitable norm $\|\cdot\|_{W(E)}$ in Banach space W(E) of functions $f: E \to \mathbb{R}^d$ such that $\mathcal{F}C_b^2 \subset W(E)$. So, $\lambda - L$ is invertible for all $\lambda > \lambda_0$.

Step 2

Show "density of range", i.e. $(\lambda - L)(\mathcal{F}C_b^2)$ is dense in $(W(E), \|\cdot\|_{W(E)})$ for one (hence all) $\lambda > \lambda_0$. (Easier to achieve for weaker norms!)

Cannot take: $W = C_b(E)$, since coefficients of L not continuous in general.

In this talk:

Only Step 1 in

- L^p approach for stochastic porous media equation. Here $W(E) := L^p(E, \mu)$ for suitable measures on E!
- WFS-approach for stochastic Navier-Stokes equation Here W(E):= weighted space of sequentially weakly continuous functions.

${f E}$ - L^p -Approach

General idea of L^p -approach:

Step 1: Reference measures on E.

Solve $L^*\mu = 0$ " μ is L-infinitesimally invariant". (i.e. solve an elliptic problem first!)

Borel σ algebra

i.e. find probability measure μ on $\widetilde{\mathcal{B}(E)}$ such that $L\varphi \in L^1(E,\mu)$ and

$$\int L\varphi \, \mathrm{d}\mu = 0 \quad \forall \, \varphi \in \mathcal{F}C_b^2 \, .$$

Then not hard to show: $(L, \mathcal{F}C_b^2)$ is dissipative on $L^p(E, \mu)$ (so has closure $(\bar{L}, D(\bar{L}))$ on $L^p(E, \mu)$ for all $p \in [1, \infty)$)

Step 2:

Show:
$$(\lambda - L)(\mathcal{F}C_b^2)$$
 dense in $L^p(E, \mu)$

Then $\exists e^{t\bar{L}}, t > 0$, on $L^p(E, \mu)$ hence

$$L^{p}(E,\mu)-\frac{\mathrm{d}}{\mathrm{d}t}\underbrace{e^{t\bar{L}}f}_{u(t,\cdot)}=\bar{L}(\underbrace{e^{t\bar{L}}f}),\quad t>0,\ f\in D(\bar{L}),\quad \text{"solution in } \underline{L}^{p}\text{"}$$

Remark. Then
$$\int e^{t\bar{L}} f d\mu = \int f d\mu \ \forall t > 0$$
 " μ invariant"

 $\mathbf{F} - L^p$ -Approach for

Stochastic Porous Medium Equation

Now **Step 1** for stochastic porous medium equation (=SPME):

For simplicity $\Psi(x) = x^3$. So,

$$dX_t = \Delta(X_t^3) dt + \sqrt{A} dW_t$$

$$\uparrow$$

$$= (W_t^i e_i)_{i \in \mathbb{N}}$$
where W_t^i indep. B. motions on \mathbb{R}^1

on
$$E := H^{-1}(\Lambda)$$
 (:= dual of $H_0^1(\Lambda)$), $\Lambda \subset \mathbb{R}^d$, open, bdd., $\partial \Lambda$ smooth.

Dirichlet bd. cond.

Have

$$H_0^1(\Lambda) \subset L^2(\Lambda) \subset H^{-1}(\Lambda) \xrightarrow{\Delta^{-1}} H_0^1(\Lambda).$$

- $\{e_i \mid i \in \mathbb{N}\}\ = \text{eigenbasis of Dirichlet Laplacian on } H^{-1}(\Lambda).$
- $A \in L(H^{-1}, H^{-1}), Ae_i = \lambda_i e_i$ ("diagonal")
- $\lambda_i \ge 0 \ \forall i \in \mathbb{N}$, and $\sum_{i=1}^{\infty} \lambda_i < \infty$ ("trace class").

In this case for $\varphi \in \mathcal{F}C_b^2(H^{-1})$

$$L\varphi(x) = \frac{1}{2} \sum_{i=1}^{\infty} \lambda_i \frac{\partial^2}{\partial e_i^2} \varphi(x) + {}_{H^{-1}} \langle \Delta x^3, D\varphi(x) \rangle_{H_0^1},$$

 $x \in L^2(\Lambda) \left(\subset H^{-1}(\Lambda) \right)$ s.th. $x^3 \in H_0^1$. (So, can only be written in this form for special $x \in H^{-1}(\Lambda)$)

Step 1: Solve $L^*\mu = 0$.

Let $V_2: H^{-1}(\Lambda) \to [0, \infty]$ "Lyapunov function"

$$V_2(x) := \begin{cases} \frac{1}{2} \int_{\Lambda} x^2(\xi) \, d\xi, & x \in L^2(\Lambda), \\ +\infty, & \text{else.} \end{cases}$$

10c

Then for $x \in L^2(\Lambda)$ ($\subset H^{-1}(\Lambda)$) s.th. $x^2, x^3 \in H_0^1(\Lambda)$

$$LV_2(x) = \underbrace{\frac{1}{2} \sum_{i=1}^{\infty} \lambda_i \int_{\Lambda} e_i^2(\xi) \, d\xi}_{=:C=\text{const.}} + \underbrace{\frac{1}{H^{-1}} \langle \Delta x^3, x \rangle_{H_0^1}}_{=:-\frac{3}{4} \int_{\Lambda} |\nabla x^2(\xi)|^2 \, d\xi} = \underbrace{C}_{\geq 0} - \underbrace{\Theta_2(x)}_{\geq 0}$$

Restrict to $x \in \text{span}\{e_1, \dots, e_N\}$

$$L_N V_2(x) = \underbrace{\frac{1}{2} \sum_{i=1}^N \lambda_i \int_{\Lambda} e_i^2(\xi) \, d\xi}_{\leq C} + \underbrace{H^{-1} \left\langle P_N(\Delta x^3), x \right\rangle_{H_0^1}}_{=-\Theta_2(x)} \leq \underbrace{C - \Theta_2(x)}_{\text{independent of N!}}$$

Relatively easy to show:

([Bogachev / R.: Th. Prob. Appl. '00])

 \exists prob. measure μ_N on span $\{e_1,\ldots,e_N\}\cong\mathbb{R}^N$ s.th. $L_N^*\mu_N=0$, so

$$0 = \int L_N V_2 \, \mathrm{d}\mu_N \le C - \int \Theta_2 \, \mathrm{d}\mu_N$$

$$0 = \int L_N V_2 \, \mathrm{d}\mu_N \le C - \int \Theta_2 \, \mathrm{d}\mu_N$$

$$\operatorname{Consider} \mu_N \text{ on } H^{-1}(\Lambda) \ (\supset \operatorname{span}\{e_1, \dots, e_N\}), \text{ then}$$

$$\sup_N \mu_N \left(\{\Theta_2 > R\} \right) \overset{\operatorname{Chebychev}}{\le} \frac{1}{R} \cdot \sup_N \int \Theta_2 \, \mathrm{d}\mu_N \overset{\$}{\le} \frac{1}{R} \cdot C \overset{R \to \infty}{\longrightarrow} 0$$

$$\underset{\text{in } H^{-1}(\Lambda)}{\overset{\text{Prokhorov}}{\Rightarrow}} \exists \ \mu := \lim_{k \to \infty} \mu_{N_k} \qquad \text{in weak topology of measures on } H^{-1}(\Lambda)$$

$$\operatorname{and} \quad \int \Theta_2 \, \mathrm{d}\mu \le C.$$

$$(\operatorname{Can show similarly:} \int |\nabla x^3|_{L^2}^2 \ \mu(\mathrm{d}x) < \infty,$$

$$\operatorname{so} \mu \left(\left\{ x \in L^2(\Lambda) \mid x^2, x^3 \in H_0^1(\Lambda) \right\} \right) = 1. \)$$
Then show (again work!)
$$L^* \mu \quad \left(\stackrel{!}{=} \lim_{h \to \infty} L_{N_k}^* \mu_{N_k} \right) = 0.$$

G – WFS -Approach

General idea of WFS-approach for

Step 1

Prove a weighted maximum principle in infinite dimension, i.e.

show (in applications by finite dimensional approximation):

There exist two functions $\mathbb{V}, \mathbb{W} : E \to \mathbb{R}_+, \mathbb{V} \leq \mathbb{W}$ both with weakly compact levels sets $\{\mathbb{V} \leq R\}, \{\mathbb{W} \leq R\}, R > 0$, such that for some $\lambda_0 > 0$

$$\sup_{x \in \{\mathbb{W} < \infty\}} \frac{(\lambda_0 - L)u}{\mathbb{W}}(x) \ge \sup_{x \in \{\mathbb{V} < \infty\}} \frac{u}{\mathbb{V}}(x),$$

Then

(a variant of) $(L, \mathcal{F}C_0^2)$ is dissipative on W(E),

where the Banach space W(E) is defined by

$$W(E) := \left\{ u : \{ \mathbb{V} < \infty \} \to \mathbb{R} \middle| f_{\upharpoonright \{ \mathbb{V} \le R \}} \text{ is weakly continuous } \forall R > 0 \text{ and } \lim_{R \to \infty} \sup_{\{ \mathbb{V} \ge R \}} \frac{|f|}{\mathbb{V}} = 0 \right\} =: C_{\mathbb{V}}$$

equipped with the norm

$$||u||_{W(E)} := \sup_{\{\mathbb{V} < \infty\}} \frac{|u|}{\mathbb{V}}.$$

H – WFS -Approach for Stochastic

Navier-Stokes Equation

Step 1

Weighted maximum principle holds with $(\kappa, \alpha > 0, \kappa > \alpha(1 + \nu^{-2}))$

$$\mathbb{V}(x) := e^{\kappa \|x\|_E^2} (1 + \|\nabla x\|_E^2)^{\alpha}$$

and

$$\mathbb{W}(x) := \nu \mathbb{V}(x) (\kappa \|\nabla x\|_2^2 + \alpha \|\Delta x\|_2),$$

$$x \in E = \{x \in L^2(\Lambda \to \mathbb{R}^d, d\xi) \mid \text{div } x = 0\}.$$