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A — From ODE to PDE

in finitely many variables



A — ODE to PDE, finite dimensional

1a

ODE

dX7 = B(X?)dt

1
(1) X = rzeR?

t
X7 =x+/B(X§ ) ds
0

pif(z) = f(th )
pof =f for f:R* =R

solves PDE (2)

on R?

semigroup

(pt+3f(x) = pt(psf)(i))
by flow property




A — ODE to PDE, finite dimensional

1b

pef(x) = f(X7 )
pof =f for f:RY =R

solves PDE

“generator”
of (1)

Here B = (B!,...,B%) :R? - R? and ¢; = (0, ...

semigroup

(pt+sf(1") = pt(psf)(ﬂf))
by flow property

,1,...,0) canonical basis

Z'th



A — ODE to PDE, finite dimensional

2a

ODE

dX7 = B(X?)dt

1
(1) X = rzeR?

t
X7 =x+/B(X§ ) ds
0

pif(z) = f(th )
pof =f for f:R* =R

solves PDE (2)

on R?

semigroup

(pt+3f(x) = pt(psf)(i))
by flow property




A — SODE to PDE, finite dimensional

2a

SODE
dX} = B(X})dt+ dW,
(1) ‘ (X7) ' on R?
X = zeRd
t
X/ (w) :x—i—/ B(XZ(w))ds + Wi(w)
0 N——~

Brownian motion

on R?

Kol{rgrov ptf(l’) = /f(Xtm(w'>) P<d°‘)) = E[]{(X;ﬂ
pof = f for f RIS R

solves PDE (2) (heat equation in finitely many variables)

semigroup

(Pt+sf(x) = Pt(Psf)(iU))
by fawxpropenty
Markov property
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A — SODE to PDE, finite dimensional

2b

Kolymoggrov pef (@) = /f(Xf(w)) P(dw) =: E[f(X})]
pof =171 forf:RdHR

solves PDE (heat equation in finitely many variables)

to 1 a
0 o I}jH @+352
(3) ZBW%%@ﬂ@+§&%ﬂ@

=: L(p.f)(z)

« T ]

o)

Here B= (B!,...,BY) :R! - R¥and ¢; = (0,...,1,...,

semigroup

(prosf (2) = pilps] ) ()
by fimwxproperty
Markov property

0) canonical basis




A — SODE to PDE, finite dimensional 2b

Ito:
pfa) = ELFCX)
=f<x>+f;E[/ot(aif)<Xf> sz]Qd;/otEKaif)(X:) 5| ds
X - T e
+ = ; / [( Desde, f) (X7) (dwg’z,;xj:g’m} (Taylor up to order 2!)

/

~~

952
=ps (868] f) (x) 8;5ds



A — SODE to PDE, finite dimensional

3a

SODE
dX} = B(X})dt+ dW,
(1) ‘ (X7) ' on R?
X = zeRd
t
X/ (w) :x—i—/ B(XZ(w))ds + Wi(w)
0 N——~

Brownian motion

on R?

Kol{rgrov ptf(l’) = /f(Xtm(w'>) P<d°‘)) = E[]{(X;ﬂ
pof = f for f RIS R

solves PDE (2) (heat equation in finitely many variables)

semigroup

(Pt+sf(x) = Pt(Psf)(iU))
by fawxpropenty
Markov property




A — SODE to PDE, finite dimensional

3a

SODE

dXF = B(XF)dt + o(X7)dW,

d
Xy = rzeRd on R

Xf(w):x—I—/O B(XZ(w)) ds+/0 o(XZ(w)) dWs(w)

Brownian motion

on R?

Kol{rgrov ptf(l’) = /f(Xtm(w'>) P<d°‘)) = E[]{(X;ﬂ
pof = f for fRI SR

solves PDE (2) (heat equation in finitely many variables)

semigroup

(Pt+sf(x) = Pt(Psf)(iU))
by fawxpropenty
Markov property




A — SODE to PDE, finite dimensional

3b

= E[f(X])]

copger (@)1= [ FOF() Bl

pof =f for f:RY =R

solves PDE (heat equation in finitely many variables)

Ito Z Bz

= B(x) - Vpif()

=: L(p.f)(x)
N

“generator”

of (1)

(2) ptf

+ fTr(

) ;

Here B = (B!,...,B%) :R? - R% and ¢; = (0, ...

semigroup

(prosf (2) = pilps] ) ()
by fimwxproperty
Markov property

.,0) canonical basis



A — SODE to PDE, finite dimensional 3b

semigroup
Kogl'ov pif(z) = /f(th(W)) P(dw) =: E[f(th)} (pt+sf(93) = pt(psf)(x))

pof =f for f:R?—R by fuwxproperty
Markov property

solves PDE (heat equation in finitely many variables)

d )2
@ pia) Z B @)+ 3 > (0T @o@)” 5 @)
(5) = B(z) - Vup f(x) + 5TI‘((J’T(ZI))O'(II:)DQZ)tf(ZIJ))
=: L(pf)(x)
« T tor”
o)

Here B = (B!,...,B%) :R? — R% and ¢; = (0,...,1,...,0) canonical basis

and 0 = (07) : R — M (d x d)
—_———

d X d-matrices



Construction of Brownian motion

4a

[Levy—Wiener—Ciesielski]

First ingredient: Haarbasis of L*([0,1], d¢):
T

Lebesgue
measure

foo=1,and forn € N, 0 < k < 2", k odd,

A
2”71 [ —
| 1
1 1
1 1
| |
T
0 k=1 1k k+l
271/ IQTL I n
|
l .
1 1
_\/Qn—l 1

(fak)o<k<2n,k oad is ONB of L*([0, 1], dt)

neN




Construction of Brownian motion

4b

Second ingredient: Standard normal distribution on R>

Standard normal distribution on R!:

1 o2
v(dx) == ce 7 dx
d Ve 1
Gauss Lebesgue meas.
on R!
Set Yok 1= 7.

P.= ® Tn ke product measure on R* (: R{(”’k)"“})

0<k<2™
k odd
neN

Define &, : RUmRINEN, 0<k<2",k 0dd}U{(0.0)} _, R (projection) and for ¢ € [0, 1]

t
Wi(w) = Z fn’k(w)/ frk(s) ds converges for P-a.e. w € R
1 (nk) 0

Brownian motion on R!




B — From SODE to PDE

in infinitely many variables



B — SODE to PDE, infinite dimensional

ba

SODE in £
(1) dX® = B(X?) dt + o(X7) AW,
T
Brownian motion
on E
X§ =z € E := separable Hilbert space ( = L*R™ dx),
(e-g) (e-g.)
T T
inner Lebesgue
product { , ) measure

under very strong
./ conditions on B, o

—
1

OUR
POINT!

pf(x) = / FXFW) B(dw) . pof=f forf:E—R

solves PDE (2) (heat equation in infinitely many variables)

HE(R™, da),
:

Sobolev
space




B — SODE to PDE, infinite dimensional 5b

pof(2) :/ﬂf(Xf(u;)) P(dw) , pof =f, for f:E—R

solves PDE (heat equation in infinitely many variables)

0 - 0 1 0?
(2) aptf(x) = Z<B($) ) €z‘> %ptf(x) + B Z <‘7T($)‘7(1’) €i s €j> Wptf(x) (heuristically!)
=1 ' hi=1 =:A(z) B
=: L(p:f)(x).
1
generator”
of (1)

Here B: E — E and {e; | i € N} ONB of E and
o:FE— L(E)

(bounded) linear operators
on



B — SODE to PDE, infinite dimensional

6a

For simplicity A(z) = 0¥ (z)o(z) = A independent of x € E. So, have:

o(Xt) above € L(E), pos.
N
dXt = B(Xt)dt + \/Z th <— B.M.on FE

Xo=z € FE = sep. Hilbert space with (, )

Associated generator (Kolmogorov operator)

Lpla) = S (Bla) o) 2 0) + 5

| —
I
Ay
o
)
@)
K)(‘b
5

= (B(z),Dp(z)) + % Tr(AD%p(x))

Fréchet derivatives

ONB of E

S

/
for x € F and ¢ = g((el, ... (e, )) — all such FC2

T T

GC,? (R\) €N arbitrary




B — SODE to PDE, infinite dimensional

bb

Altogether:

dX, = B(X,)dt + VA dW,

1
<) X():ZL‘EE

Associated generator (Kolmogorov operator)

(o) = Y (Blo) ) 5200) + 5 Y (Aeoes) 5ele)

= <B(yc) , Dgo(:v)> + % Tr(AD*p(x))
forz € Eand ¢ = g((e1, -),....{en, -)) : E = R.

The associated heat equation is also called Kolmogorov (backward) equation

(2) %u(t,x) = Lu(t,x), u(0,-)=/f,

where f: F — R.




B — SODE to PDE, infinite dimensional 6b

Want to solve (2), then (1)!

Once (2) is solved one has to apply highly developed machinery to get solution of (1).
In this talk we concentrate on solving (2):
Two approaches to solve (2) will be presented:

e [P-approach

e Weighted function space (=WFS -) approach




C — Two stochastic PDE as examples

(a) Porous media equation (LP-approach)

(b) Stochastic Navier-Stokes equation, d = 2
(WFS-approach)



C — Two stochastic PDE as examples fa

(a) Stochastic porous media equation (L’-approach)

with Dirichlet boundary conditions

dX, = AU(X)dt+VAdW, with?:R—>R
——

B(X,
(Xe) trace class

on E := H~Y(A), A C RY, open;
S0,

Lo(x) = (AY(z), Dp(x)) + %TrADng(x), v€ HYA), forp:H '(A)—R.

Remark:
(i) A=0: enormous literature.

(ii) A # 0: first papers [DaPrato / R.: JEE '04], [Barbu / Bogachev/Da Prato/R.:
JFA ’06] Subsequently, many others. Mainly, on SPDE, not on Kolmogorov
equations: Kim, Wu, Zhang, ...
Among most recent: Da Prato/R./Rosowski/Wang: Comm. P.D.E. ’06], [Ren/R./Wang:

BiBos-preprint '06].



C — Two stochastic PDE as examples

/b

(c) Stochastic Navier—Stokes equation, d = 2 (WFS-approach)

viscosity B(X¢)

dX, = [PAX, — (X, V), X,] dt + VA dW,,
7 7

Stokes-Laplacian gradient trace class or even
with Dirichlet on R2 finite dim. range
on boundary conditions

E:={z e L*(A - R* dz) | div g =0},

in the sense of
distributions

A C R?, open, bounded, A smooth;
S0,

1
Lo(z) = (vAzx — (x, V>R2x, Dp(z)) ke, +§Tr AD*p(z), z€E, forp:E—R.




C — Two stochastic PDE as examples 7b

Remark:
(i) A=0: OVERWHELMING literature

(ii) A% 0: on SPDE: OVERWHELMING literature
A # 0: on Kolmogorov equations: Da Prato/Debussche (also d = 3!), Barbu,
Flandoli, Gozzi,...
WEFS-approach: [R./Sobol: Ann. Prob. ’06] for d = 1., [R./Sobol: Preprint '06]
for d = 2 and also for geostrophic equation

(iii) Existence of infinitesimally invariant measures also proved for d > 2: [Bogachev

/ R.: PTRF "00]




D — Strategies to solve

the Kolmogorov equation



D — Strategy 8

to solve

(2) %u(t,x) = Lu(t,x), u(0, -) = f.

semigroup approach!

Construct

et f(x) = u(t, x), t > 0.

If e'” exists, then by operator calculus
A—L) = / e Methdt, A > \.
0

So, try to construct (A — L)™', A > )¢, and invert Laplace transform, (well-known
method: “Hille-Yosida Theorem”).




D — Strategy 8

For implementation two major steps necessary:
Step 1
Show “dissipativity”, i.e.
1= Depllwem = (= Mo)llelwe Vo € FCLo A> X,
for suitable norm || - ||wz) in Banach space W (E) of functions f : E — R? such that

FC? C W(E). So, A — L is invertible for all A > \,.

Step 2
Show “density of range”, i.e. (A — L)(FC}) is dense in (W(E), || - |lwg)) for one
(hence all) A > Xq. (Easier to achieve for weaker norms!)

Cannot take: W = C,(E), since coefficients of L not continuous in general.

In this talk:
Only Step 1 in

e [P - approach for stochastic porous media equation.
Here W(FE) := LP(FE, u) for suitable measures on FE!

e WES-approach for stochastic Navier-Stokes equation
Here W (FE) := weighted space of sequentially weakly continuous functions.




E - P -Approach



E — L”-Approach 9

General idea of LP-approach:
Step 1: Reference measures on F.

Solve L*pn=0 “pis L-infinitesimally invariant”.  (i.e. solve an elliptic problem first!)

Borel o-
algebra

~
i.e. find probability measure p on B(FE) such that Ly € L'(E, p) and

/Lgpdu:O Ve FCE.
Then not hard to show: (L, FC}) is dissipative on LP(E, 1)
(so has closure (L, D(L)) on LP(E, ) for all p € [1,00) )
Step 2:

Show: (A — L)(FCE) dense in LP(E, )
Then 3Je'f, ¢ >0, on L?(E, ;1)  hence

d .- L _
LP(E,p)-— e f = L(e'tf), t>0, f € D(L), “solution in LF”

dt — ~ N
u(tv') u(tv’)

Remark. Then eth dp = /f dp Vt>0 “pinvariant”



F — LP-Approach for

Stochastic Porous Medium Equation



F — LP”-Approach for Stochastic Porous Medium Equation

10a

Now Step 1 for stochastic porous medium equation (=SPME):
For simplicity ¥(z) = z®. So,

dX, = A(XP) dt + VA dW, (SPME)
r
= (W?Ci)ieN

where W’g indep. B. motions on R!
on E:= H ' (A) (:= dual of Hj(A)), A C R% open, bdd., A smooth.

Dirichlet bd. cond.

Have
1 2 1 AL 1
HO(A) C L°(A) c H(A) —>b._ y HO(A).
ijection

e {e;|i € N} = eigenbasis of Dirichlet Laplacian on H~'(A).
e Ac L(H '\, H™), Ae; = \ie; (“diagonal”)

e \,>0VieN, and Z)‘i < 00 (“trace class”).

i=1




F — LP”-Approach for Stochastic Porous Medium Equation

10b

In this case for ¢ € FCZ(H 1)
I, 07 A
Ly(z) = 52&- a_eg‘p(‘”) + 4 (A2, Dp())

z € L*(A) (C HY(N)) s.th. 2® € Hy.
( So, can only be written in this form for special x € H='(A) )

Step 1: Solve L*p = 0.

Let Vo : H™Y(A) — [0,00] “Lyapunov function”

o 2 ] P08 re T,

400, else.




F — LP-Approach for Stochastic Porous Medium Equation 10c

Then for z € L*(A) (C H'(A)) s.th. 22,2 € H(A)

LVy(x ZA/ §dé+ ya(Ad® z)yy = C = ()

~ - -~ o~ W—/
—:C'=const. :_%IA‘VI.Q(SHQ de >0 >
=:—02(x)
Restrict to x € span{ey,...,ex}
L N

LyVe(z) = 3 Z)‘i/ef(é) A€+, (Py(A2%),7) 0 < C' = Os(x)

1 2=l A R .
Ooaolig}\?!r S‘,C = 7(‘9’2 (z) indf)};e]r&(lient

Relatively easy to show: ([Bogachev / R.: Th. Prob. Appl. '00])

3 prob. measure py on span{ey,...,exy} = RN sth. Liuy = 0, so

O:/LN‘/QdMNSO/GQdMN [




F — LP”-Approach for Stochastic Porous Medium Equation

10d

OZ/LNVQdMNSC—/@QdNN L

Consider iy on H*(A) (D spanfes, ... ex}), then

Chebychev | U1 Roo
Sup,uN({@2 > R}) G sup/@g duy < =-C ——=0
N ——— R

have compact

complements
in H=1(A)
Prokhorov .
= poi= lim py, in weak topology of measures on H '(A)
k—o0

and /@2 dp < C.

( Can show similarly: /\Vm3|iz p(dzr) < oo
so p({z € L*(N) | 2%, 2% € H}(N)}) =1.)

Then show (again work!)

L* (; Alglolc L}(V;‘.IUNL") =0.




G — WFS -Approach



G — G-WFS-Approach 13a

General idea of WFS-approach for

Step 1

Prove a weighted maximum principle in infinite dimension, i.e.

show (in applications by finite dimensional approximation):

There exist two functions V., W : £ — R,V < W both with weakly compact levels
sets {V < R}, {W < R}, R > 0, such that for some \g > 0

(Mo — L)u u

sup (r) > sup (2),
ze{W<oo} W ze{V<oo}

Then
(a variant of) (L, FCF) is dissipative on W(E),
where the Banach space W (FE) is defined by

W(E) :={u:{V < oo} — R|fjv<py is weakly continuous VR > 0 and lim sup 1 =0} = Cy

equipped with the norm

lullweey = sup )
(Ve<oo} ¥



H — WFS -Approach for Stochastic
Navier-Stokes Equation



H — WFS -Approach for Stochastic Navier-Stokes Equation 14a

Step 1

Weighted maximum principle holds with (k,a > 0, K > a(1 + v7?))
V(@) i= e E (1 + | Ve )

and

W(z) == vV(2) (5[ Val; + al|Az]l),

z € E={xel’(A—R%dE)| divz =0}




