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Abstract

Let K be a maximal unramified extension of a nonarchimedean local field of residual
characteristic p > 0. Let G be a reductive group over K which splits over a tamely ramified
extension of K. To a point x in the Bruhat—Tits building of G over K, Moy and Prasad
have attached a filtration of G(K) by bounded subgroups.

In this thesis, we give necessary and sufficient conditions for the existence of stable
vectors in the dual of the first Moy—Prasad filtration quotient V, under the action of the
reductive quotient G,. This extends earlier results by Reeder and Yu for large residue-field
characteristic and yields new supercuspidal representations for small primes p.

Moreover, we show that the Moy—Prasad filtration quotients for different residue-field
characteristics agree as representations of the reductive quotient in the following sense:
For some N coprime to p, there exists a representation of a reductive group scheme over
Spec(Z[1/N]) all of whose special fibers are Moy-Prasad filtration representations. In
particular, the special fiber above p corresponds to G, acting on V.

In addition, we provide a new description of the representation of G, on V, as a
representation occurring in a generalized Vinberg-Levy theory. This generalizes an earlier
result by Reeder and Yu for large primes p. Moreover, we describe these representations
in terms of Weyl modules.

In this thesis, we also treat reductive groups G that are more general than those that

split over a tamely ramified field extension of K.
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1 Introduction

Let k be a nonarchimedean local field with residual characteristic p > 0. Let K be a
maximal unramified extension of k and identify its residue field with F,. Let G be a
reductive group over K. In [2,[3], Bruhat and Tits defined a building (G, K') associated to
G. For each point x in Z(G, K), they constructed a compact subgroup G, of G(K), called
parahoric subgroup. In [I1] 2], Moy and Prasad defined a filtration of these parahoric

subgroups by smaller subgroups

Gy =Gpob Gy DGypy> ...,

where 0 < r; < r9 < ... are real numbers depending on z. For simplicity, we assume that
1,72, ... are rational numbers. The quotient G, /G, can be identified with the Fp—points
of a reductive group G, and G, /Gy, (i > 0) can be identified with an Fp—vector space

V., on which G, acts.

If GG is defined over k, this filtration was used to associate a depth to complex representations
of G(k), which can be viewed as a first step towards a classification of these representations.
In 1998, Adler ([I]) used the Moy—Prasad filtration to construct supercuspidal represen-
tations of G(k), and Yu ([2I]) generalized his construction three years later. Kim ([9])
showed that, for large primes p, Yu’s construction yields all supercuspidal representations.
However, the construction does not give rise to all supercuspidal representations for small

primes.

In 2014, Reeder and Yu ([I5]) gave a new construction of supercuspidal representations
of smallest positive depth, which they called epipelagic representations. A vector in the

dual V,,, = (Gyr,/Gar,)’ of the first Moy-Prasad filtration quotient is called stable in



the sense of geometric invariant theory if its orbit under G, is closed and its stabilizer
in G, is finite. The only input for the new construction of supercuspidal representations
in [15] is such a stable vector. Assuming that G is a semisimple group that splits over a
tamely ramified field extension, Reeder and Yu gave a necessary and sufficient criterion
for the existence of stable vectors for sufficiently large primes p. One application of this
thesis is a criterion for the existence of stable vectors for all primes p, which yields new
supercuspidal representations. Moreover, we do not only treat semisimple groups that split
over a tamely ramified field extension, but we work with a larger class of groups that also

includes arbitrary simply connected or adjoint groups.

Our method of proof assumes the result for large primes and semisimple groups that split
over a tamely ramified extension, and transfers it to arbitrary residue-field characteristics
and a larger class of groups GG. This is done via a comparison of the Moy—Prasad filtrations

for different primes p.

More precisely, we show for a large class of reductive groups over finite extensions of Q" (or
F,((t))*"), which we call good groups (see Definition [3.1]), that the Moy—Prasad filtration
is in a certain sense (made precise below) independent of the residue-field characteristic p.
The class of good groups contains reductive groups that split over a tamely ramified field
extension, as well as simply connected and adjoint semisimple groups, and products and
restriction of scalars along finite separable (not necessarily tamely ramified) field extensions
of any of these. The restriction to this (large) subclass of reductive groups is necessary as
the main result (Theorem fails in general. Given a good reductive group G over K,
a rational point x of the Bruhat—Tits building #(G, K) and an arbitrary prime ¢ coprime
to a certain integer N that depends on the splitting field of G (for details see Definition

3.1), we construct a finite extension K, of Q" a reductive group G, over K, and a point



z, in B(Gy, K,). To these data, one can attach a Moy-Prasad filtration as above. The
corresponding reductive quotient G, is a reductive group over Fq that acts on the quotients
V.., which are identified with Fq—vector spaces. For a given positive integer 7, we show in
Theorem that then there exists a split reductive group scheme % over Z[1/N] acting
on a free Z[1/N]-module ¥ such that the special fibers of this representation are the above
constructed Moy—Prasad filtration representations of G, on V,,_,,. This allows to compare

the Moy—Prasad filtration representations for different primes.

We also give a new description of the Moy-Prasad filtration representations for reductive
groups that split over a tamely ramified field extension of K. Let m be the order of z.
We define an action of the group scheme p,, of m-th roots of unity on a reductive group
ng over F;m and denote by CfF’: m0 the identity component of the fixed-point group scheme.
In addition, we define a related action of p,, on the Lie algebra Lie(%ﬁp), which yields a
decomposition Lie(%g (F,)) = @, Lie(%ﬁp)i(Fp). Then we prove that the action of G,
on V,,. corresponds to the action of %F’; % on one of the graded pieces Lie(%) ;(F,) of the
Lie algebra of %Fp. This was previously known by [15] for sufficiently large primes p, and
representations of the latter kind have been studied by Vinberg [19] in characteristic zero
and generalized to positive characteristic coprime to m by Levy [10]. To be precise, in this
thesis we even prove a global version of the above mentioned result. See Theorem for
details. We also show that the same statement holds true for all good reductive groups

after base change of s and ¥ to Q, see Corollary |4.4]

This allows us to classify in Corollary the points of the building (G, K) whose first
Moy—Prasad filtration quotient contains stable vectors, which then yield supercuspidal
representations. In addition, we prove in Theorem that, similarly, the existence of

semistable vectors is independent of the residue-field characteristic.



Moreover, the global version of the Moy—Prasad filtration representations given by Theorem
[3.7] allows us to describe the representations occurring in the Moy—Prasad filtration of
reductive groups that split over a tamely ramified field extension of K in terms of Weyl

modules, see Section [6]

Structure of the thesis. In Section, 2| we first recall the Moy—Prasad filtration of G, and
then in Section [2.4] we introduce a Chevalley system for the reductive quotient that will be
used for the construction of the reductive group scheme % that appears in Theorem [3.7]
In Section [2.5] we construct an inclusion of the Moy-Prasad filtration representation of G
into that of G for a sufficiently large field extension F' of K that will allow us to define the
action of # on ¥ in Theorem[3.7] Afterwards, in Section[3, we move from a previously fixed
residue-field characteristic p to other residue-field characteristics g. More precisely, we first
introduce the notion of a good group and define K,/Qy", G, over K, and x, € B(Gy, K,).
In Section 3.3 we prove our first main theorem, Theorem Section [ is devoted to
giving a different description of the Moy—Prasad filtration representations and their global
version as generalized Vinberg—Levy representations (Theorem . In Section , we use
the results of the previous sections to show that the existence of (semi)stable vectors is

independent of the residue characteristic. This leads to new supercuspidal representations.

We conclude the thesis by giving a description of the Moy—Prasad filtration representations

in term of Weyl modules in Section [6]

Conventions and notation. If M is a free module over some ring A, and if there is
no danger of confusion, then we denote the associated scheme whose functor of points is
B +— M ®4 B for any A-algebra B also by M. In addition, if G and T are schemes over a
scheme S, then we may abbreviate the base change G xsT by Gr; and, if T = Spec A for

some ring A, then we may also write G 4 instead of Gr.



When we talk about the identity component of a smooth group scheme G of finite presenta-
tion, we mean the unique open subgroup scheme whose fibers are the connected components
of the respective fibers of the original scheme that contains the identity. The identity com-

ponent of G will be denoted by G°.
Throughout the thesis, we require reductive groups to be connected.

For each prime number ¢, we fix an algebraic closure @q of Q, and an algebraic closure

=

o((t)) of Fy((t)). All field extensions of Q, and F,((t)) are assumed to be contained in Q,

and Fy((t)), respectively. We then denote by Qy" the maximal unramified extension of Q,
(inside Q,), and by F4((¢))"" the maximal unramified extension of Fy((t)). For any field
extension F' of Q, (or of F,(())), we denote by F*™™¢ its maximal tamely ramified field
extension. Similarly, we fix an algebraic closure Q of Q, and we denote by Z the integral

closure of Z in Q and by Zq the integral closure of Z, in @q.

In addition, we will use the following notation throughout the thesis: p denotes a fixed
prime number, k is a nonarchimedean local field (of arbitrary characteristic) with residual
characteristic p, and K is the maximal unramified extension of k. We write O for the ring
of integers of K, v: K — Z U {oo} for a valuation on K with image Z N {oo}, and w for a
uniformizer. G is a reductive group over K, and E denotes a splitting field of G, i.e., E is
a minimal field extension of K such that G is split. Note that all reductive groups over
K are quasi-split and hence FE is unique up to conjugation. Let e be the degree of E over
K, Og the ring of integers of E, and wg a uniformizer of . Without loss of generality,
we assume that @ is chosen to equal @$ modulo @4 Og. We denote the (absolute) root
datum of G' by R(G), and its root system by ® = &(G). We fix a point x in the Bruhat-Tits
building #(G, K) of G, denote by S a maximal split torus of G such that = is contained

in the apartment o/ (S, K) associated to S, and let T be the centralizer of S, which is a



maximal torus of G. Moreover, we fix a Borel subgroup B of G containing 7', which yields
a choice of simple roots A in ®. In addition, we denote by ®x = P (G) the restricted
root system of G, i.e., the restrictions of the roots in ® from 7" to S. Restriction yields a

surjection from ® to ®y, and for a € P, we denote its preimage in ¢ by P,.

Moreover, to help the reader, we will adhere to the convention of labeling roots in ® by

Greek letters: a, 3, ..., and roots in ®x by Latin letters: a,b, .. ..

2 Parahoric subgroups and Moy—Prasad filtration

In order to talk about the Moy—Prasad filtration, we will first recall the structure of the

root groups following [3], Section 4]. For more details and proofs we refer to loc. cit.

For a € ®, we denote by UF the root subgroup of G corresponding to a. Note that
I' = Gal(E/K) acts on ®. We denote by E, the fixed subfield of E of the stabilizer
Stabr(a) of a in T'. In order to parameterize the root groups of G over K, we fix a
Chevalley-Steinberg system {zZ : G, — UF},co of G with respect to T, i.e. a Chevalley
system {zf : G, — UF},cs of G (see Remark satisfying the following additional

properties for all roots a € ®:

(i) The isomorphism =¥ : G, — UZ is defined over E,,.

(ii) If the restriction a € ®x of a to S is not divisible, i.e. § & ®g, then xf(a) = yozLoy~!

for all v € Gal(E/K).

(iii) If the restriction a € ®x of a to S is divisible, then there exist 3, ' € ® restricting
to §, Eg = Ep is a quadratic extension of E,, and z¥ ) = v o w7 oy~ ' o¢, where

e € {£1} is 1 if and only if 7 induces the identity on Ej.
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According to [3, 4.1.3] such a Chevalley-Steinberg system does exist. It is a generalization
of a Chevalley system for non-split groups and it will allow us to define a valuation of root

groups in Section [2.1] even if the group G is non-split.

Remark 2.1. We follow the conventions resulting from [I7, XXIII Définition 6.1}, so we
do not add the requirement of Bruhat and Tits that for each root o, z¥ and zf, are

associated, i.e. zZ(1)z¥, (1)zE(1) is contained in the normalizer of T. However, there

exists €, € {1, —1} such that

My = xf(l)xE (ea,a)xE(l)

—Q «

is contained in the normalizer of T. Moreover, Ad(m,)(Lie(xZ)(1)) = €., Lie(zZ,)(1).

Definition 2.2. For «a, 5 € ®, we define ¢, 53 € {£1} by

Ad(maq)(Lie(s)(1)) = €a,s Lie(zs,(5)(1)-

The integers €, for o and 8 in @ are called the signs of the Chevalley-Steinberg system

{xg}aetb‘

2.1 Parametrization and valuation of root groups

In this section, we associate a parametrization and a valuation to each root group of G.

Let a € & = Pg(G), and let U, be the corresponding root subgroup of G, i.e., the
connected unipotent (closed) subgroup of G normalized by S whose Lie algebra is the sum

of the root spaces corresponding to the roots that are a positive integral multiple of a.



Let GG, be the subgroup of G generated by U, and U_,, and let 7 : G* — GG, be a simply
connected cover. Note that 7 induces an isomorphism between a root group U, of G* and
U,. We call U, the positive root group of G*. In order to describe the root group U,, we
distinguish two cases.

Case 1: The root a € Pk is neither divisible nor multipliable, i.e. § and 2a are both not
in ®g.

Let o € &, be a root that equals a when restricted to S. Then G* is isomorphic to the
Weil restriction Resg, /x SLo of SLy over E, to K, and U, ~ Resg, )k UF, where UF is the
root group of Gz corresponding to av as above. Note that (U,)p is the product []4eq. US-

Using the F,-isomorphism z¥ : G, — UF, we obtain a K-isomorphism
7, = Resg, /k :1:5 : Resg,/k Go — Resg, /k Uf = U,
which we call a parametrization of U,. Note that for u € Resg, /x G4(K) = E,, we have

Zq(u) = H x5 (ug), with uyq) =y(u) for v € Gal(E/K).
Be(ba

This allows us to define the valuation ¢, : U,(K) — ﬁz N {oo} of U,(K) by

a(za()) = v(u).

Case 2: The root a € @k is divisible or multipliable, i.e. § or 2a € Pg.
We assume that a is multipliable and describe U, and Us,. Let a,a € ®, be such that
a+ a is a root in ®. Then G* is isomorphic to Resg,, ./x SUs, where SUj is the special

unitary group over E, 5 defined by the hermitian form (z,y, z) — o(z)z + o(y)y + o(z)x



on E? with o the nontrivial element in Gal(E,/E,,z). Hence, in order to parametrize
U,, we first parametrize the positive root group U, of SUs. To simplify notation, write

L=FE,=FE5and Ly = E, 5. Following [3], we define the subset Hy(L, Ls) of L x L by
Ho(L,Ly) = {(u,v) € L X L|v+o(v) =o(u)u}.

Viewing L x L as a four dimensional vector space over Ly, and considering the corresponding
scheme over Ly (as described in “Conventions and notation” in Section [I)), we can view
Ho(L, Ly) as a closed subscheme of L x L over Ls, which we will again denote by Hy(L, Ls).

Then there exists an Lo-isomorphism pu : Ho(L, L) — U, given by

where o is induced by the nontrivial element in Gal(L/Ls). Using this isomorphism, we can
transfer the group structure of U, to Hy(L, Ly) and thereby turn the latter into a group
scheme over L,. Let us denote the restriction of scalars Resy,/x Ho(L, La) of Hy(L, Ls)
from Foig = Ly to K by H(L,Ly). Then, by identifying G* with Resg,_ ./x SUs, we

obtain an isomorphism
Tq :=moResg, . /xp: H(L, L) = U,

which we call the parametrization of U,. We can describe the isomorphism z, on K-
points as follows. Let [®,] be a set of representatives in ®, of the orbits of the action of

Gal(E,/E,.5) = (o) on ®,. We will choose the sets of representatives for ®, and ®_, such



that [®,] and —[®_,] are disjoint. For § € [®,], choose v € Gal(E/K) such that § = v(«)
and set 8 = (@) and ug = y(u) for every u € L. By replacing some x§+g by x§+go (—1) if
necessary, we ensure that x§+g = Inn(mgl) oz (where mj is defined as in Remark .

Moreover, we choose the identification of G* with Resg,_, . /x SUs so that its restriction

to the positive root group arises from the restriction of scalars of the identification that

satisfies
1 —w v
(o 1 || =2zl s0)zE(w)
0 0 1

Then we have for (u,v) € Hy(L, Ls) = H(L, L2)(K) C L x L that

va(u,v) = ] wf(up)a?, 5(—vs)al(o(u)s). (2.1)
BE[Pa]

The root group Uy, corresponding to 2a is the subgroup of U, given by the image of x,(0, v).
Hence Usy,(K) is identified with the group of elements in £, of trace zero with respect to

the quadratic extension E,/F, s, which we denote by Eg.

Using the parametrization x,, we define the valuation ¢, of U,(K) and @q, of Us,(K) by

pulra(u,v) = Sv(0)

P2a(2a(0,0)) = v(v).

Remark 2.3. (i) Note that v+ o(v) = o(u)u implies that Fv(v) < v(u).

I'Note that our choice of xg or ngrE for negative roots 3, E deviates from Bruhat and Tits. It allows us
a more uniform construction of the root group parameterizations that does not require us to distinguish

between positive and negative roots, but that coincides with the ones defined by Bruhat and Tits in [3].
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(ii) The valuation of the root groups U, can alternatively be defined for all roots a € ®

as follows. Let u € U,(K), and write u = [][ = uq with u, € U,(E). Then

aced,Udy,

1
©0q(u) = inf < inf gpf(ua), inf §<paE(ua)> ,

acd, a€dy,

where pZ(1,(v)) = v(v). The equivalence of the definitions is an easy exercise, see

also [3], 4.2.2].

2.2 Affine roots

Recall that the apartment &/ = &7 (S, K) corresponding to the maximal split torus S of
G is an affine space under the R-subspace of X,(S) ®z R spanned by the coroots of G,
where X, (S) = Homg(G,,,S). The apartment &/ can be defined as corresponding to all
valuations of (T(K), (Uy(K))aco,) in the sense of [2 Section 6.2] that are equipolent to
the one constructed in Section i.e., families of maps (@, : Us(K) — R U {00})uca,
such that there exists v € X,(5) ®z R satisfying @, (u) = ¢q(u) + a(v) for all u € U,(K),
for all @ € k. In particular, the valuation defined in Section [2.1] corresponds to a point
in o/ that we denote by xy. Then the set of affine roots W on &7 consists of the affine

functions on & given by
Ui = V() ={y—aly —x0) +v]a € Pg,y €Ty},

where

F:z = {pa(u) |u € Uy — {1}, pa(u) = sup pa(ulsa)} -

11



It will turn out to be handy to introduce a more explicit description of I'),. In order to do

so, consider a multipliable root ¢ and o € ®,, and define

(Ea)o = {u € Eq | TrEa/Ea+a (u) = 0}7
(Ea)l = {u € E, | TrEa/Ea+a (u> = 1}:

(Ba)max = {u € (Ba)'|v(u) =sup{v(v)[v € (E.)'}}.

Then, by [3], 4.2.20, 4.2.21], the set (E,)L. .. is nonempty, and, with A any element of (E,)}

max max

and a still being multipliable, we have

I = Lv(\) + v(Ea — {0}) (2.2)

Do = v((Ea)" = {0}) = v(Es — {0}) — 2T, (2.3)

For a being neither multipliable nor divisible and o € ®,, we have

Iy = v(Ea — {0}). (2.4)

Remark 2.4. Note that if the residue-field characteristic p is not 2, then 1 € (E,)b.,

for a a multipliable root and o € ®,, and hence I'!, = v(E, — {0}). If the residue-field

characteristic is p = 2, then v(\) < 0 for A € (E,)}

max*

2.3 Moy—Prasad filtration

Bruhat and Tits (|2, [3]) associated to each point z in the Bruhat-Tits building #(G, K) a
parahoric group scheme over O, which we denote by P, whose generic fiber is isomorphic

to G. We will quickly recall the filtration of G, := P,(QO) introduced by Moy and Prasad

12



in [11} [12] and thereby specify our convention for the involved parameter.
Define Ty = T'(K) NP, (O). Then T} is a subgroup of finite index in the maximal bounded
subgroup {t € T(K) |v(x(t)) = 0Vx € X*(T) = Homg(T,G,,)} of T(K). Note that this

index equals one if G is split.

For every positive real number r, we define

T, ={teTy|v(x(t)—1) >rforal x € X(T) = Homy(T,G,,)}.

For every affine root ¢ € Uy, we denote by ¢ its gradient and define the subgroup Uy of
U;(K) by

Up ={u € Uy(K)|u=1 or ¢;(u) = (zo)}

Then the Moy—-Prasad filtration subgroups of G, are given by
Gy = (T, Uy |90 € e, () > 1) for 7> 0,

and we set

Gx,r+ = U Gm,s~

s>r
The quotient G, /G0, can be identified with the F,-points of the reductive quotient of the
special fiber P, X Fp of the parahoric group scheme P,, which we denote by G,. From [3]

Corollaire 4.6.12] we deduce the following lemma.

Lemma 2.5 ([3]). Let Rx(G) = (Xx = Homg(S,G,), Pr, X = X.(5), k) be the
restricted root datum of G. Then the root datum R(G,) of G, is canonically identified with
(Xg, ¥, Xg, @) where

' ={aed|a(x—mx0) €T}

13



We can define a filtration of the Lie algebra g = Lie(G)(K) similar to the filtration of G,.
In order to do so, we denote the O-lattice Lie(P,) of g by p. Define p, = pNg, for a € Pk
and t = Lie(T)(K).

We define the Moy—Prasad filtration of the Lie algebra t for r € R to be

t, = {X e t|v(Lie(x)(X)) > r for all x € X*(T')} (2.5)

For every root a € @k, we define the Moy-Prasad filtration of g, as follows. Let 1, be the
smallest affine root with gradient a such that v, (z) > 0. For every ¢ € Uy with gradient
a, we let ny = e,(¥ — 1¥,), where e, = [E, : K] for some root a € ®, that restricts to

a. Note that n, is an integer. Choosing a uniformizer w, € E, and viewing p, inside
Lie(G)(E,) we set]

Uy = e (Op,pa) N g.

Then the Moy—Prasad filtration of the Lie algebra g is given by

Our = (L, uy [ Y(x) > 1) for r € R.

In general, the quotient G, /G, + is not isomorphic to g,,/g.,+ for r > 0. However, it

turns out that we can identify them (as Fp—vector spaces) under the following assumption.

Assumption 2.6. The mazimal split torus T' of G becomes an induced torus after a tamely

ramified extension.

Recall that the torus T is called induced if it is a product of separable Weil restrictions

“Note that uy does not depend on the choice of z inside 7.

14



N
of G, i.e. T = [] Resk,/kx G, for some integer NV and finite separable field extensions
i=1

K;/K,1<i<N.

For the rest of Section [2, we impose Assumption [2.6]

Remark 2.7. Assumption[2.6 holds, for example, if G is either adjoint or simply connected

semisimple, or if G splits over a tamely ramified extension.

For r € R, we denote the quotient g, ,/g.,+ (=~ Gy, /Gy ry for r > 0) by V.. The adjoint
action of G, on g,, (or, equivalently, the conjugation action of G, on G,, for r > 0)

induces an action of the algebraic group G, on the quotients V.

2.4 Chevalley system for the reductive quotient

In this section we construct a Chevalley system for the reductive quotient G, by reduction
of the root group parameterizations given in Section 2.1 Let U, denote the root group
of G, corresponding to the root a € ®(G,) C ®x(G). We denote by Ogur the ring of
integers in Qp". If K is an extension of Q)", we let x : F, — Ogur be the Teichmiiller lift,
i.e. the unique multiplicative section of the surjection Ogur — R). If K is an extension
of F,((t))"" = lim Fu((t)), we let x : F, = i Fpr — lim F,n[[t]] be the usual

inclusion.

Lemma 2.8. Let A =\, € (E,). _ for some a € ®,, and write A = )¢ - wgwe; e.q., take

mazxr
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Ao =A= % if p # 2. Consider the map

Fp — Gx70
Tq ( %OX(U)WEQ, x(u)whe o(x(u)wher) - wg(’\)e> if a is multipliable
u 24 (0, x (1) - 52" %) if a is divisible

—a(w—mo)eeg)

zo(x(u) - wg otherwise,

where s = —(a(x — x9) +v(A)/2) - e, and €1, €5,€63 € 1 + wpOp such that ﬁ/%x(u)w%el,

Y (W)@ ey and y(u)wy" " %es are contained in E,.

Then the composition of this map with the quotient map Gyo — Go/Gzo+ yields a root

group parametrization T, : G, = U, C G,.

Moreover, the root group parameterizations {Z,}aca(a,) form a Chevalley system for G,.

Proof. Note first that since a € ®(G,), we have a(x — o) € I, by Lemma Suppose

a is multipliable. Then U,(F,) is the image of
1
Im = {xa(U, V)| (U, V) € Hy(Eq, Eata), §V(V) = —a(r — xo)} .

in Gx,O/Gx,O—‘r- Sel
U —(a(z—x0)+v(N)/2)-€

and

V(u) = x(w)ywheao(x(u)mhe) - .

Then V(u)+o(V(u)) = U(u)o(U(u)), i.e. (U(u),V(u))isin Hy(Ea, Fata), and v(V(u)) =
—2a(z — ). Moreover, every element in Im is of the form (U(u),V (u) + vo) for u € F,

and some element vy € (F,)° with v(vg) > —2a(x — x¢), because 2a(x — z) & v((E,)°) (by
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Equation (2.3)), page [12). Note that the images of z,(U(u), V (u) + vp) and z,(U(u), V (u))
in G,0/G.o+ agree. Thus, by the definition of z,, we obtain an isomorphism of group
schemes 7, : G, — U,. Similarly, one can check that z, yields an isomorphism G, — U,

for a not multipliable.

In order to show that {Z,}.ca(q,) is a Chevalley system, suppose for the moment that a
and b in ®(G,) are neither multipliable nor divisible, and ®, = {a} and ®, = {3} each
contain only one root. Let a¥ be the coroot of the root «, and denote by s, the reflection

in the Weyl group W of G corresponding to «. Then, using [4, Cor. 5.1.9.2], we obtain

2B (@ N (e ammy T () ) (Lie(ef) (w0
—Q «
0 (™)) (eapmy” T Lie(aE 5)(1))

= (sa(B)(@" (@5 easmp C T Lie(2F 5)(1)

(
— Ad (a(@" ")) Ad (25 (12", (can)2E (1) (=57 Lie(af)(1))
(

= el P Lo ) (1)

= ol A Lie(a )(1)

= o Lie(zl ) (@m0,

This implies (assuming e; = 1, otherwise it’s an easy exercise to add in the required

constants) that for m, 1= 7,(1)T_4(€q,0)T0 (1) With €, , = €4, We have
Ad(m,)(Lie(zy)(1)) = Ad(To(1)T-a(€4,0)Ta (1)) (Lie(Tp) (1)) = €a,p Lie(Ts, @) (1)

We obtain a similar result even if &, and ®, are not singletons by the requirement that

{xF} e is a Chevalley-Steinberg system, i.e. compatible with the Galois action as de-
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scribed in Section [2| Similarly, we can extend the result that Ad(m,)(Lie(Z})(1)) =

+ Lie(Ts,))(1) to all non-multipliable roots a,b € ®(G,) C Pk.

Suppose now that a € ®(G,) C P is multipliable, and let @ € ¢, and @ = o(«) € P, as

above. Following [3, 4.1.11], we define for (u,v) € Hyo(Eq, Euta)

ma(U,V) = 2(UV ™, U<V71))xfa(€a,aU7 €a,av)i€a(UJ(V71)a c(V7h).

Then Bruhat and Tits Loc. cit. show that m,(U,V) is in the normalizer of the maximal

torus T and

ma(U, V) =mg1a(V) and z_y(€nal, €00V ) =ma124(U, V)m;j, (2.6)
where
0 0 -1
ma1=7oResg ... | 0 —1 0 (2.7)
-1 0 0
Vv 0 0
and a(V)=moResg, ., | 0 Vig(V) 0 . (2.8)

Note that we have

Mal Alo(—wE)(“("“""”O)’V(A)/meel,wg(“’m)7V(W2)661a(wg(%w‘))wmmeq)WE(A)S) € Gao,

and denote its image in G, /G o+ by m,. Using that v(\) = 0 if p # 2, and o(wg) =
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+wp = wp mod @ if p = 2 as well as the compatibility with Galois action properties of

a Chevalley-Steinberg system, we obtain

Mg = Ta(1)T—a(€0.0)Ta(l)  With €44 = €qq(—1)@E20)7v/De,

Moreover, using Equation (2.6), (2.7) and (2.8, an easy calculation shows that

—1

T_q(€qqt) = Maxa(u)m,

for all u € Fp. In other words,

Ad(T1,) (Lie(Z,) (1)) = €q.0 Lie(T_,)(1),

as desired. We obtain analogous results for m_, being defined as above by substituting “a”

by “—a”. Moreover, T, = M_,, and hence Ad(m_,)(Lie(T,)(1)) = €., Lie(T_,)(1).

In order to show that {Z,}.ca(q,) forms a Chevalley system, it is left to check that

Ad (1) (Lie(7,)(1)) = + Lie(Ts, 1)) (1) (2.9)

holds for a,b € ®(G,) with a # +b and either a or b multipliable. Note that if z, and
r_, commute with x;,, then the statement is trivial. Note also that if b is multipliable
and [ € P, then f lies in the span of the roots of a connected component of the Dynkin
digram Dyn(G) of ®(G) of type As, for some positive integer n. Hence, for some o €
®,, a and [ lie in the span of the roots of such a connected component. Moreover, by
the compatibility of the Chevalley-Steinberg system {xZ},ce with the Galois action, it

suffices to restrict to the case where Dyn(G) is of type Ay, with simple roots labeled by
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Qny Oty - - -, P1, a1, B1, o, - - -, B as in Figure[I] and the K-structure of G arises from the

—eo ---o . o o ---o
Ay Qr A o1 B B Bn

Figure 1: Dynkin diagram of type As,

unique outer automorphism of Ay, of order two that sends «; to ;. If a root in ®x(G)
is multipliable, then it is the image of +(ag + ... 4+ a;) in @ for some 1 < s < n. In
particular, the positive multipliable roots are orthogonal to each other, by which we mean
that (a¥,b) = 0 for two distinct positive multipliable roots a and b. Equation can

now be verified by simple matrix calculations in SLg, ;. O]

2.5 Moy—Prasad filtration and field extensions

Let F be a field extension of K of degree d = [F : K], and denote by v : F — 1ZU{oo} the
extension of the valuation v : K — Z U {oco} on K. Then there exists a G(K)-equivariant
injection of the Bruhat-Tits building #(G, K) of G over K into the Bruhat-Tits building
B(Gp,F) of Gp = G xx F over F. We denote the image of the point z € #(G, K) in
B(Gr,F) by x as well. Using the definitions introduced in Section [2.3] but for notational
convenience still with the valuation v (instead of replacing it by the normalized valuation
d-v), we can define a Moy—Prasad filtration of G(F') and gr at x, which we denote by
GL.(r>0)and gl ,(r € R), as well as its quotients V] (r € R) and the reductive quotient
GL.

Suppose now that G is split, and that I, C v(F') for all restricted roots a € ®x(G). This

holds, for example, if F' is an even-degree extension of the splitting field E. Then, using

Remark 2.3[(1) and the definition of the Moy-Prasad filtration, the inclusion G(K) < G(F)
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maps G, into Gi .. Furthermore, recalling that for split tori 7" the subgroup 7 is the
maximal bounded subgroup of the (rational points of) 7" and using the assumption that

[ C v(F) for all restricted roots a € Pk (G), we observe that this map induces an injection

LKF ! GI,O/Gz,O+ — GQQ/G£0+ 5 (210)

F
T

which yields a map of algebraic groups G, — G, also denoted by tx p. If p # 2 or d is

odd, then ¢k r is a closed immersion.

Lemma 2.9. For every r € R, there exists an injection

kPt Vagr = Gar/Bert = gir/gir—&— = Va}:r
such that we obtain a commutative diagram for the action described in Section

G, XV,,——=V,, (2.11)
lLK,FXLK,F,r lLK,F,r

F F F
Gac X V:L",r ﬁvw,r

Proof. For p # 2, let 1k , be induced by the inclusion g < gr = g®x F. This map is well
defined, and it is easy to see that it is injective on (t N gy, )/gz,+ and on (ga N Gur)/ Gt

for a € ®x non-multipliable. Suppose a is multipliable. If r — a(x — x¢) € T, i.e. there

exists an affine root ¢ : y — a(y — x¢) + v with ¥(z) = r, and p,(z.(u,v)) = Y(xg) =
r —a(r — xg) € I, then v(u) = 5v(v) = r —a(x — o). This follows from the trace of
1

% being one, hence v — o (u)u is traceless and therefore has valuation outside 21"

3 ", while

v(v) € 2T",. Hence the image of g, N g, in V7, is non-vanishing if it is non-trivial in V.,

ie. if r —a(x — zg) € I'),. Moreover, Diagram ([2.11)) commutes.
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In case p = 2, if a € Pk is multipliable and r — a(z — xy) € I, and @, (. (u,v)) =
r—a(x — zp), then v(u) = r — a(x — x9) — 3v(Aa) for Ay € (Ea)Lax by reasoning analogous
to that above. However, recall from Remark that v(\,) < 0 for p = 2. This allows us

to define tx g, as follows. We define the linear morphism ¢x p, : g < gr to be the usual

inclusion g = gr = g®x Font® @ g4, where P are the non-multipliable roots in

aEdIm
@, and to be the linear map from € g, onto g NiePe)/2 D 9.®0, Or, | Cgr
acdmul acdmul

on € g, such that

1
agdmn

inc, ey (Lie(g) (o020 02 0)) = Lie(x,) (w7 0),

« o

where @2 denotes the set of multipliable roots in ®x, a € @2 and o € ®,. By restricting

ik, Fr 1O gg, and passing to the quotient, we obtain an injection ¢k g, of V,, into Vf -

In order to show that ¢ is compatible with the action of G, for p = 2 as in Diagram ([2.11]),

it suffices to show that tx (G, ) stabilizes the subspace

V= LK, Fyr (gm,r M @ ga)a

1
acdmm

where the overline denotes the image in V,,. First suppose that the Dynkin diagram
Dyn(G) of ®(G) is of type As,, with simple roots labeled by av,, o, 1, . .., 2, a1, 51, Bay - - -, Bn
as in Figure [I] on page [T and that the K-structure of G arises from the unique outer
automorphism of As, of order two that sends «; to §;. If a € ®x(G) is multipliable,
then a is the image of +(ay + ... + ;) for some 1 < s < n. Suppose, without loss
of generality, that a is the image of a; + ... + 5. Consider the action of the image

of Tp in Gf for b the image of —(a; + ... + o) for some 1 < t < n. Note that
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LK.F (:cb(HO(E_(aﬁ_“Jrat), K))n Gmp) is the image of xé(a1+...+at+51+...+ﬂt)(E) NGy in

Gﬁo/Gf,OJr. Hence the orbit of tx (:Eb(HO(E,(mJF_“Jrat), K))n Gx70> on Lk pr (Gzr N Ga)

is contained in

F F F F /
gn 95,7« N <9a1+...+as DOs+.48, DO_(g+.46) D g—(oc1+...+at)> cV.

(Note that the last two summands can be deleted unless s = ¢.) Thus V" is preserved under
the action of the image of Z; in GI. Similarly (but more easily) one can check that the
action of the image of Tj, in GI for all other b € @ preserves V’, and the same is true for

the image of T'N G, in GI. Hence i r(G,) stabilizes V.

The case of a general group G follows using the observation that, if a € ®x is multipliable,
then each o € @, is spanned by the roots of a connected component of the Dynkin diagram
Dyn(G) of ®(G) that is of type Aa,, together with the observation that the above expla-
nation also works for Dyn(G) being a union of Dynkin diagrams of As, that are permuted
transitively by the action of the absolute Galois group of K. Thus V' is preserved under

the action of tx p(G,), and hence the Diagram (2.11)) commutes. O]

In the sequel we might abuse notation and identify V, , with its image in Vf, , under tx .

3 Moy—Prasad filtration for different residual charac-

teristics

In this section we compare the Moy—Prasad filtration quotients for groups over nonar-
chimedean local fields of different residue-field characteristics. In order to do so, we first

introduce in Definition the class of reductive groups that we are going to work with.
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We then show in Proposition that this class contains reductive groups that split over a
tamely ramified extension, i.e. those groups considered in [I5], but also general simply con-
nected and adjoint semisimple groups, among others. The restriction to this (large) class
of reductive groups is necessary as the main result (Theorem about the comparison
of Moy—Prasad filtrations for different residue-field characteristics does not hold true for

some reductive groups that are not good groups.

Definition 3.1. We say that a reductive group G over K, split over E, is good if there

exist

- an action of a finite cyclic group I = (7/) on the root datum R(G) = (X, ®, X, ®)

preserving the simple roots A,

- an element u generating the cyclic group Gal(E N K*™°/K) and whose order

|Gal(E N K*%™¢/K)| is divisible by the prime-to-p part of the order of T’
such that the following two conditions are satisfied.

(i) The orbits of Gal(E/K) and I on ® coincide, and, for every root o € @, there exists

Uy, € Gal(E/K) such that

7’(04) = Ul’a(Oé) and Ulg = U mod Gal(E/E N Ktame)'

(ii) There exists a basis B of X stabilized by Gal(E/E N K*™°) and (y'") on which the
Gal(E/E N K*%)_orbits and (y'")-orbits agree, and such that for any B € B, there
exists an element v, g € Gal(E/K) satisfying

v (B)=v15(B) and v p=u mod Gal(E/E N K™™).
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In the sequel, we will write [['| = p® - N for some integers s and N with (N,p) = 1.

Remark 3.2. Note that condition |(i)| of Definition is equivalent to the condition

(i) The orbits of Gal(E/K) on ® coincide with the orbits of I" on ®, and there exist
representatives C,...,C,, of the orbits of IV on the connected components of the
Dynkin diagram of ®(G) satisfying the following. Denote by ®; the roots in ® that
are a linear combination of roots corresponding to C; (1 < i < n). Then for every

root o € &3 U...U P, and 1 <t; < p°N, there exists uy, o € Gal(E/K) such that

("Y’)tl (Oé) = Uty o™X and Upy 0 = ' mod Gal(E/E N Ktame).

Condition of Definition is equivalent to the condition

(ii’) There exists a basis B of X stabilized by Gal(E/E N K*™) and by (y'") on which
the Gal(E/E N K*")-orbits and (7" )-orbits agree, and such that there exist repre-
sentatives {Bj, ..., By} for these orbits on B, and elements v, ; € Gal(£/K) for all

1<t <p°N and 1 < i < n' satisfying

(7/>t1 (Bz) = Utl,i(Bi> and Vg g = ut1 mod Gal(E/E N Ktame).

Before showing in Proposition that a large class of reductive groups is good, we prove

a lemma that shows some more properties of good groups.

Lemma 3.3. We assume that G is a good group, use the notation introduced in Definition
and Remark[3.3, and denote by E; the tamely ramified Galois extension of K of degree

N contained in E. Then the following statements hold.
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(a) The basis B of X given in Property|(ii) is stabilized by Gal(E/E,) and the Gal(E/E;)-

orbits and (y'™)-orbits on B agree.
(b) G satisfies Assumption ' more precisely, T X F; is induced.

(c) We have XY = XGalE/BY), Moreover, the action of u on X% /B qgrees with the

action of ¥ on XV = XGalB/E) g xGalB/K) = XT'

Proof. To show part [(a)] consider a representative B; for a Gal(E/E N K*™¢)-orbit on B
as in Remark [3.2] By Property there exists vysny; € Gal(E/K) such that v,y (B;) =
(Y)P"N(B;) = B; and vpsy; = v mod Gal(E/E N K*™°). Choose uy € Gal(E/K)
such that up = u mod Gal(E/E N K'*®™). Then we can write vpsn; = v - uf " for some
v € Gal(E/ENK*®) and uf N (B;) = v~ (B;) is contained in the Gal(E/E N K'*™)-orbit
of B;. Note that the elements uf V" for 1 < t, < [(E N K*") : E}] are in Gal(E/FE,) and
form a set of representatives for Gal(E/E;)/ Gal(E/ENK®™), and hence Gal(E/E;)(B;) =
Gal(E/E N K*™™)(B;). Thus B is stabilized by Gal(F/FE;) and the Gal(E/E;)-orbits on

B coincide with the Gal(E/E N K'*™)-orbits, which coincide with the (y'")-orbits. This
proves part .

Part @ follows from part @ by the definition of an induced torus.

In order to show part note that XG(¥/E) is spanned (over Z) by

Z B}1<i<n’ B { Z B}1<i<n"

BeGal(E/E)(B;) - Be(v'N)(B:) -

The Z-span of the latter equals X", which implies X7 = XGal(E/E)  Using Definition
and the observation that v mod Gal(ENK""¢/E,) is a generator of Gal(E;/K), we

conclude that the action of u on X Gal(E/E) aorees with the action of 7/ on X7 = X Gal(E/EY)
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and that

/

 Cal(B/K) _ (XGal(E/Et))Gal(Et/K) _ <X71N>7 _ x 0

Proposition 3.4. Ezamples of good groups include

(a) reductive groups that split over a tamely ramified field extension of K,
(b) simply connected or adjoint (semisimple) groups,
(¢) products of good groups,

(d) groups that are the restriction of scalars of good groups along finite separable field

extensions.

Proof. [(a)] Part [(a)] follows by taking I = Gal(E/K) and u = 7.

@ Part @ can be deduced from and @ (whose proofs do not depend on as

follows. If G is a simply connected or adjoint group then G is the direct product of
restrictions of scalars of simply connected or adjoint absolutely simple groups. Hence by
and @ it suffices to show that, if G is a simply connected or adjoint absolutely simple
group, then G is good. Recall that these groups are classified by choosing the attribute
“simply connected” or “adjoint” and giving a connected finite Dynkin diagram together
with an action of the absolute Galois group Gal(Q,/K) on it. We distinguish the two
possible cases.

Case 1: G splits over a cyclic field extension E of K. Then take IV = Gal(F/K) and u =~/
or u = 1 according as the field extension is tamely ramified or wildly ramified, and choose
B to be the set of simple roots of G, if G is adjoint, and the set of fundamental weights

dual to the simple co-roots of G (i.e. those weights pairing with one simple co-root to 1,
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and with all others to 0), if G is simply connected.

Case 2: (G does not split over a cyclic field extension. Then G has to be of type D4 and split
over a field extension E of K of degree six with Gal(E/K) ~ S3, where S; is the symmetric
group on three letters. In this case we observe (using that G is simply connected or adjoint)
that the orbits of the action of Gal(E/K) on X are the same as the orbits of a subgroup
7/37Z C Gal(E/K) ~ S;. Moreover, as S3 does not contain a normal subgroup of order
two, i.e. there does not exist a tamely ramified Galois extension of K of degree three, this
case can only occur if p = 3, and we can choose " = Z/37Z, u the nontrivial element in

Gal(E N K*me /K) ~ 7/27, and B as in Case 1 to see that G is good.

In order to show part , suppose that Gy,...,G are good groups with splitting
fields E4,. .., By and corresponding cyclic groups I'} = (v1),..., I}, = (7;) and generators
w; € Gal(E; N K™ /K), 1 < i < k. Let G = Gy X ... x Gy. Then G splits over
the composition field E of Ei, ..., Ey, and |Gal(E N K% /K)| is the smallest common
multiple of |Gal(E; N K% /K)| 1 < i < k. Choose a generator u of Gal(E N K*™¢/K).
For i € [1, k], the image of u in Gal(E; N K™/ K) equals ;" for some integer r; coprime to
|Gal(E; N K™ /K|, which we assume to be coprime to p by adding |Gal(E; N K™/ K))|
if necessary. Hence (7/;)" is a generator of I'}, and we define v = (7/{)™ X ... x (7)™
and IV = (7). Note that the order [["| = p°N of I" is the smallest common multiple of
IT%,1 < i <k, and hence N divides |Gal(E N K*™¢/K)|. By if a € ®(G;), then

there exists uy , € Gal(E;/K) such that

v (a) = ()" (o) = Uy o with Uy, = u' = uin Gal(E; N K*™/K).
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Let uy o be a preimage of u o in Gal(E/K). Using that

|Gal(E/E N E™™)||Gal(E N E*™/E;)| |Gal(E;/ K)|

= |Gal(E/K)| = |Gal(E/E N K'*™°)| |Gal(E N K'**™/E; N K™™)| |Gal(E; N K™ /K)|,

we obtain by considering the factors prime to p that |Gal(E N EP™/E;)|
= |Gal(E N K*™¢/E; N K*%™°)|. Moreover, the kernel of Gal(E N Ef*™¢/E;) — Gal(E N
K'me /N K%me) where the map arises from reduction mod Gal(E N Ef*™e/E N K%me),
has oder a power of p, hence is trivial; so we deduce that the map is an isomorphism. Thus
we can choose an element ug € Gal(E/E;) C Gal(E/K) such that ug = w|CABNK = /K)|
mod Gal(E/ENK™"¢) hecause y|CalENK /K)o Gal(ENnK*™/E;NK). Since u1 4 = u
mod Gal(E/E;NK"*"¢) and ul GaENK /K] 4 o generator of Gal(ENK*me/E, N Kme),
by multiplying u; , with powers of uy € Gal(E/E;) if necessary we can ensure that uy , = u
mod Gal(E/E N K"%™™). As Gal(E/E;) fixes a, we also have 7/(a) = uy o(«), and we con-
clude that G satisfies Property |(i)| of Definition [3.1| for all v € ®(G) =[], ®(G,).

Choosing B to be the union of the bases B; corresponding to the good groups G; (by viewing
X; embedded into X := X; x ... x Xj), we conclude similarly that G satisfies Property
. This proves that G is a good group and finishes part

(d)| Let G = ResF/Ké for G a good group over I', K C F C E. Then there exists a
corresponding I' = Gal(E/K)-stable decomposition X = @?:1 X;, where d = [F': K], to-

gether with a decomposition of ® as a disjoint union [] ®; such that I' = Gal(E/K) acts
1<i<f

transitively on the set of subspaces X; with Stabp(X;) ~ Gal(E/F), and (X, CEi,Xi, (i)
is isomorphic to the root datum R(CN?) of Gforl<i< f. We suppose without loss of

generality that the fixed field of Stabp(X) is F', i.e. Stabr(X;) = Gal(E/F), and we write
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d = d,-d,y, where d,, is a power of p and d,y is coprime to p. As G is good, there exist a cyclic
group I = (3) acting on (Xy, ®1, A;) and a generator @ of Gal(E N F'm¢ / F) satisfying the
conditions in Definition 3.1 Fix a splitting Gal(E N F**™°/F) — Gal(E/F), and let U
be the image of w under the composition Gal(E N F**™¢/F) — Gal(E/F) — Gal(E/K).

Note that we have a commutative diagram (where N’ = |Gal(E N F*™¢/F)|)

Gal(E N Ftame /Py Gal(E/F) Gal(E/K)

Zl -

ZJN'Z—> 7/N'Z x Gal(E/E N Ft*m)~ 7,/(N'd,,)Z x Gal(E/E N K*me)

Hence we can choose uy € Gal(E/K) such that
ul =%y mod Gal(E/E N K'™™°),

and u := up mod Gal(E/E N K%™) is a generator of Gal(E N K*™¢/K) (because d =
d,d,y with d, invertible in Z/(N'd,)Z). After renumbering the subspaces X; for i > 1, if

necessary, we can choose elements v;,q , € Gal(E/K) with
Vira, = o =u mod Gal(E N K"*"/K)

for 1 <ty <d, such that if we set Ver+tady, = Uo for 1 <t; <dy,0 <ty <d,then v;(X;) =
Xii1, 1 <i < dand 74(Xy) = X;. By multiplying 74 by an element in Gal(E/E N K'*me)

if necessary, we can assume that v4 041 0...07v; = tg. Define 7' € Aut(R(G),A) by

d
X = @Xl > (.Tl, . ,Qfd) —> (/"70 ﬂal O YdTd, V1L1, Y2X2, . - - ;Vd—lxd—l)-
=1
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Then the cyclic group I = (/) preserves A, and we claim that [V and u satisfy the

conditions for G in Definition B.1l

Property |(i)| of Definition is satisfied by the construction of +'.

In order to check Property let B be a basis of X; C X stabilized by Gal(E/E N Ftame)
with a set of representatives {By, ..., By} and ¥y, ; € Gal(E/F) with (3)(B;) = ¥, :(B:)
(1 < t; < p°N/d) satisfying all conditions of Property of Remark for G. For

1<i<n and 1<j <dy, define

Bi-1yd,+j = ué_l(BZ-) =j-10om(By).

Note that (v'")(X;) = ]_[d Xi+id,, and hence, setting n' =n'- d,, the set
0<i<d,

forms a basis of X (because v has order d,). We will show that B satisfies Property |(ii’)
of Remark [3.2| with set of orbit representatives { B; }1<;<, (and hence satisfies Property

of Definition .

For 1 <t <p°N,1<i<n,1<j<dy, we define Ut (i-1)dy+j € Gal(E/K) by

Vj—14£© 0 ; ifj+t<d

Ut (i-1)dy+j = _ ) L e ) '
Vi, O Y10V, 0y Oy Mjtt>dit=di+ta—j+1

Then using (v')%x, =7 and 3 (B;) = 0, 4(B;) € X1, we obtain

(Y)(B;) = v4(B;) forall 1 <t <p°N and 1 <i<n'.

31



Moreover, since
U, =u" mod Gal(E/ENF™™) = 3, ,=uy =ul =u™ mod Gal(E/E N K"™)
and v, = v mod Gal(E N K% /K) for all 1 <k < d by definition, we obtain

v =u' mod Gal(E/ENK™) foralll<t<p’Nandl1<i<n' (3.1)

This shows that the action of (v )t1 on B; for 1 <t; <p*N and 1 < i < n/ is as required
by Condition of Remark [3.2 It remains to show that B is Gal(E/E N K'*™¢)-stable

and that the Gal(E/FE N K*)-orbits coincide with the (y'")-orbits.

In order to do so, note that Equation (3.1)) implies in particular that for 1 < ¢, < d,, we

have vy, ; = w2 mod Gal(E/E N K%™¢) and hence vy, ; € Gal(E/E;) and
<7’N> (Bi) C Gal(E/E,)(By), (3.2)

where F; is the tamely ramified degree N field extension of K inside E. Let us denote by
E, the tamely ramified Galois extension of F' of degree N/d,, contained in E. Note that

E; is the maximal tamely ramified subextension of Et over K, and [Et : By =d,. As G is

good, we obtain from Property of Definition and Lemma @ that
(7N (B:) = (/%) (B:) = Gal(B/E 1 F*™)(B,) = Gal(E/E)(By).

Using <7’N> (X1) = [I Xitia, and the inclusion (3.2), we deduce that

0<i<d,

|Gal(E/E})(By)| > ’(’V’N>(Bi) = dy = dy|Gal(E/E,)(B)| < |Gal(E/E;)(B,) ,

(™) (B)
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which implies that (vV)(B;) = Gal(E/E,)(B;) > Gal(E/E N K*%™)(B;). In order to
show that (yV)(B;) = Gal(E/E N K'*")(B;), we observe that Gal(E/E N F*™) is a
subgroup of Gal(E/E N K'™™) of index d, coprime to the index N/d, of Gal(E/E N F*me)
inside Gal(E/F). Therefore Gal(E/E N K*™) N Gal(E/F) = Gal(E/E N F*™°) inside
Gal(E/K). As Gal(E/F) is the stabilizer of X; in Gal(E/K), we deduce that there exist
d, representatives in Gal(E/E N K'™™) of the d, classes in Gal(E/E N K"%™)/Gal(E/EN

F*me) mapping X to d, distinct components X; of X. In particular, we obtain that

[y s

and hence the Gal(E/E N K'*™)-orbits on B agree with the (y")-orbits on B. This

|Gal(E/E N K"™™)(B))| > d, |Gal(E/E N F*™)(B,)| = d,

<7/Ndp> (B)

finishes the proof that Property of Remark [3.2] and hence Property of Definition
is satisfied for our choice of IV and u, and hence G is good. O

From now on we assume that our group G is good.

3.1 Construction of G,

In this section we define reductive groups G, over nonarchimedean local fields with arbitrary
positive residue-field characteristic ¢ whose Moy—Prasad filtration quotients are in a certain

way (made precise in Theorem the “same” as those of the given good group G over K.

For the rest of the thesis, assume x € #(G, K) is a rational point of order m. Here rational
means that ¢ (z) is in Q for all affine roots ¢ € Vi, and the order m of x is defined to be

the smallest positive integer such that ¢(z) € %Z for all affine roots ¢ € Wi

Fix a prime number ¢, and let I be the finite cyclic group acting on R(G) as in Definition

. Let F be a Galois extension of K containing the splitting field of (x? —2) over E, such
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that

e M :=[F : K] is divisible by the order p*N of the group I,

e )M is divisible by the order m of the point x € B(G, K).

This implies that the image of x in Z(Gp, F) is hyperspecial, and by the last condition

the set of valuations I", (defined in Section is contained in v(F') for all a € ®g. In

particular, F' satisfies all assumptions made in Section in order to define ¢k p and tx g,
[F:E] _

For later use, denote by wp a uniformizer of I such that wy ™ = wgr mod wELF:E]H, and

let OF be the ring of integers of F'.

Let K, be the splitting field of ' —1 over Qy", with ring of integers O, and uniformizer w@,.
Let F, = K,[z]/(z™ — w,) with uniformizer wp, satisfying wFMq = w, and ring of integers
OFr,. Recall that every reductive group over K, is quasi-split, and that there is a one to
one correspondence between (quasi-split) reductive groups over K, with root datum R(G)
and elements of Hom(Gal(Q,/K,), Aut(R(G),A))/Conjugation by Aut(R(G), A), where
Aut(R(G),A) denotes the group of automorphisms of the root datum R(G) that fix A.
Thus we can define a reductive group G over K, by requiring that G, has root datum
R(G) and that the action of Gal(Q,/K,) on R(G) defining the K,-structure factors through

Gal(F,/K,) and is given by
Gal(F,/K,) ~ Z/MZ =25 T/ — Aut(R(G),A),

where the last map is the action of I” on R(G) as in Definition 3.1} This means that G, is

already split over E, := K [z]/(2?"Y — w,). Note that by construction, Definition |3.1| and
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Lemma [3.3] the restricted root data of Gy and G agree:
Ric,(Gy) = Ric(G),
and we have for all @ € & = ¢(G) = ©(Gy)
|Gal(E/K) - o = |Gal(F,/K,) - af . (3.3)

All objects introduced in Section [2| can also be constructed for G, and we will denote them

by the same letter(s), but with a G, in parentheses to specify the group; e.g., we write
I(Go).
3.2 Construction of z,

In order to compare the Moy-Prasad filtration quotients of G, with those of G at z, we
need to specify a point z, in the Bruhat-Tits building #(G,, K,) of G;. To do so, choose a
maximal split torus S, in Gy with centralizer denoted by T}, and fix a Chevalley-Steinberg
system {xiq}aeq, for G, with respect to T;,. For later use, we choose the Chevalley-Steinberg

system to have signs €, 3 as in Definition 2.2} i.e.

where Ng, (T;) denotes the normalizer of Tj in G, and

Ad(mfn) (Lie(zg") (1)) = €ap Lie(z, 5)(1),
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Using the valuation constructed in Section [2.1]attached to this Chevalley-Steinberg system,
we obtain a point z, in the apartment o7, of #(G,, K,) corresponding to S,. Fixing an
isomorphism fs, : X,(S) — X.(S,) that identifies Rx(G) with Rg, (G,), we define an
isomorphism of affine spaces f, : & — 4, by

Foal) = w0g + Fsaly—20) =5 3 V(A (3.4

+,mul
a€d

where ® ™" are the positive multipliable roots in ®g, A, € (E,)L,.(G) for some a € @,

max

and a is the coroot of a, so we have a(a) = 2. We define z, := fo 4().

Lemma 3.5. The isomorphism fo 4 : & — ay induces a bijection of affine roots V. (o7;) —
\PK(%)aw = w o faﬁq-
Moreover, we have for all a € ®g and r € R that r — a(z — x¢) € T'(G) if and only if

r—a(x, —xo4) € I7(Gy).

Proof. As the set of affine roots for G on &/ (and analogously for G, on 7)) is
U =V() ={y—aly—z0) +7|a € Px,y €T},

we need to show that, for every a € ®x = ®x(G) = Pk, (G,), we have

L(G)=T,(Gy) == > v(&)-bla). (3.5)

+,mul
bed

Ny

Let us fix a € Pk, and o € &, C & = &(G) = (G,). Recall that E,(G) is the fixed
subfield of E under the action of Stabgag/k)(c). Using Equation (3.3) on page , we
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obtain

. __[Gal(E/K)[ _
Fu(6): K] = [0t~ Gal(E/ ) ol = Gal( 7y 1) -
|Gal(F,/K,)|

|Stabgal(r, k) (@)]

= [Ea(Gq) : Kq]a

and hence

V(Eo(G) = {0}) = [Ea(G) /K] ™" Z = [Ea(G) /Ky - Z = v(Ea(Gy) —{0}).  (3.6)

Note that the Dynkin diagram Dyn(G) of ®(G) is a disjoint union of irreducible Dynkin
diagrams, and if a is a multipliable root, then « is contained in the span of the simple
roots of a Dynkin diagram of type As,. Thus by Equation (3.6) and the description of I",
as in Equation on page , the Equality holds for « in the span of simple roots
of an irreducible Dynkin diagram of any type other than As,, n € Z-q, or in the span of
an irreducible Dynkin diagram of type A, whose 2n simple roots lie in 2n distinct Galois
orbits. We are therefore left to prove the lemma in the case of Dyn(G) being a disjoint
union of finitely many A,, whose simple roots form n orbits under the action of Gal(F/K).
An easy calculation (see the proof of Lemma for details) shows that, in this case, the
positive multipliable roots of ®x form an orthogonal basis for the subspace of X*(S) ® R

generated by ®x, where by “orthogonal” we mean that B(a) = 0 if a and b are distinct

positive multipliable roots, and that, if b € &, and b = >  K,a is not multipliable,
ae(};,mul
then > k4, € 2-7Z. Moreover, by the definition of K, and Fy, it is easy to check that
ae@}‘mul

for A\, € (F,)}..(G,), we have v()\,) € 2-v(FE, —{0}). Thus using the description of T",

max

as in Equation (2.2) on page [12] and Equation (2.3 on page we see that the desired
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Equation (3.5)) holds.

The second claim of the lemma follows from combining Equation (3.5) and the definition

of x, using the map in Equation (3.4) on page (36| ]

Note that Lemma implies in particular that x, is also a rational point of order m. Let us
denote the reductive quotient of GG, at x, by G,,; the corresponding Moy—Prasad filtration
groups by G, 7 > 0; the Lie algebra filtration by g, ,,r € R; and the filtration quotients
of the Lie algebra by V,_,,r € R. Then using Lemma we obtain the following corollary
to Lemma [3.5

Corollary 3.6. The root data R(G,) and R(G,,) are isomorphic.

3.3 Global Moy—Prasad filtration representation

Since R(G.) = R(G,) (Corollary [B.6), we can define a split reductive group scheme .’
over Z by requiring that R(#) = R(G,), and then /5 ~ G, and 75 =~ Gy, ; ie., we
can define the reductive quotient “globally”. In this section we show that we can define
not only the reductive quotient globally, but also the action of the reductive quotient on

the Moy—Prasad filtration quotients. More precisely, we will prove the following theorem.

Theorem 3.7. Let r be a real number, and keep the notation from Section[3.1] and[3.9, so
G is a good reductive group over K and x a rational point of B(G, K). Then there exists a
split reductive group scheme S over Z[1/N] acting on a free Z[1/N]-module ¥ satisfying
the following. For every prime q coprime to N, there exist isomorphisms %%q ~ G, and
V5, =~ Va,r such that the induced representation of g, on Vg, corresponds to the usual
adjoint representation of G, on Vg .. Moreover, there are isomorphisms %p ~ G,

and V5 =~ Vg, such that the induced representation of Az on Vg is the usual adjoint
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representation of G, on V.. In other words, we have commutative diagrams

l:x: LN l:x: jN
G, x V:p,r _>V:L",r qu X qu,r _>V:vq,r .

Remark 3.8. The theorem fails for some reductive groups that are not good groups.

We prove the theorem in two steps. In Section |3.3.1] we construct a morphism from 7 to
an auxiliary split reductive group scheme ¢, and in Section [3.3.2| we construct ¥ inside
the Lie algebra of ¢ and use the adjoint action of ¢ on its Lie algebra to define the action

of #Z on V.

3.3.1 Global reductive quotient

Let ¢4 be a split reductive group scheme over Z whose root datum is the root datum of
G. In this section we construct a morphism ¢ : 5 — ¢ that lifts all the morphisms
L Guo/Guor — GQO/GQH and tx,r, : Gz 0/Gapo+ GfZ,O/Gfs,O—&- defined in Section
. In order to do so, let us first describe the image of tx p more explicitly. In analogy to
the root group parametrization z, defined in Section 2.1 and using the notation from that
section, we define for a € ®x(G) multipliable the more general map X, : F' x F' — G(F)
by

Xa(u,v) = [ «f(up)xl 5(—vs)ak (o (u)s).
BE[®a]

Note that Xo|my(£.,5,.4) (@ € Pa) agrees with x,. We then have the following lemma.

Lemma 3.9. Let x : Fp — Oqur be the Teichmiiller lift, and U, the root group of G,
corresponding to the root a € ®(G,) C ®x(G). Define the map y, : F, — Gf,o by
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U —

Xo(vV2x(u) - w;a(xfxo)'M, X(u)w;a(‘rf‘ro)'MU(X(u)w;a(mfxo)'M)) if a is multipliable and p # 2

Xa(0, x(u)or(x(u))w M)

X0 (0, x(u) - wp2 M)

if a is multipliable and p = 2

if a is divisible

—a(x—xz9) M
(z—z0) )

zq(x(u) - wp otherwise.

Then the composition y, of y, with the quotient map Gf;o —» Gf,o/Gf,m 15 isomorphic to

LK O Ty Fp — LK,F(UQ(R,)) C Gf(Fp).

Proof. If p # 2 or if a is not multipliable, the lemma follows immediately from Lemma

2.8

In the case p = 2, note that (using the notation from Lemma [2.8))

/ /

4 (X(u)wfsa(x(u)w}) -w}(/\)M> <2v ( 1/on(u)w}/> ’

where s’ = —(a(z — zy) + v(\)/2) M, because v(\) < 0. Moreover, o(wr) = wp mod wr
in wrOp/wtOp, and hence 7, (u) = tx,p(Z(u)) by Lemmal2.§ O

Remark 3.10. An analogous statement holds for G,,. In the sequel we denote the root
group parameterizations constructed for G, analogously to Lemma by 74, : Go —
Uy, a € (G,,).

Recall that x is hyperspecial in Z(Gp, F), and hence the reductive quotient GI' of Gp

at x is a split reductive group over F, with root datum R(GI) = R(G). The analogous

statement holds for z,. Thus % is isomorphic to Gf, and % is isomorphic to Gf;‘ In
P q
order to construct explicit isomorphisms, let us fix a split maximal torus 7 of ¢ and a

Chevalley system {x, : G, — %, C G Y aco@)—o for (¢,.7) with signs equal to €, as in
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Definition i.e., the Chevalley system {x,}ace for (¢,.7) and the Chevalley-Steinberg

system {z, taco for (G,T') have the same signs.

Moreover, the split maximal torus Tr C Gp and the Chevalley system {z},co yield a
split maximal torus T of G and a Chevalley system {zF, : G, = UL c GIl.co
for (GE, TI') with signs €, 5. Similarly, we obtain a split maximal torus ng of Gfg and a
Chevalley system {Ea G, = Uk ¢ Gfg }aco for (Gfg , Tfj) with signs €, 5. In addition,
we denote by T, and T,  the maximal split tori of G, and G, corresponding to S and

S,.

Moreover, we define constants c,, € Op, and ¢, € O for a € ® as follows. We choose

v € Gal(F/K) such that
v mod Gal(F/ENK™™)=u € Gal(EN K™ /K)

and (g € Ok satisfying

Y(wr) = (¢wr mod w%.

Similarly, let 7, € Gal(F,/K,) ~ Z/MZ correspond to 1 € Z/MZ, i.e.
v, mod Gal(F,/E,) =+ € Gal(E,/K)

and (g, € Ok, such that

Y¢(@F,) = Ca, @F,-

Let C,...,C, be the representatives for the action of [' = (7') on the connected com-
ponents of Dyn(G) as given in Remark [3.2(i’), and recall that ®; denotes the roots that

are a linear combination of simple roots corresponding to C;. For a € ® there exists a
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unique triple (4, o, e,(v)) with i € [1,n], oy € ®; and e,(«) minimal in Z>o such that
751l ;) = . Note that eg(a) is independent of the choice of prime number . We also

write e(a) = e,(a). We define

Cag = Cg(:)ui(wrwo,q)M _ Cg(f)-a(xq*xo,q)'M and ¢, = g(a)-ai(xf:ro)-M _ g(a)-a(xfxo)-M'

Note that a;(x —x¢)- M is an integer, as the order m of x divides M and I'), C v(F) = +Z

L
M ?

where a is the image of o in .

Finally, we denote by (s and E the images of (¢ and (g, and by ¢, and ¢, , the images

of ¢, and ¢, under the surjections Op — Fp and Op, — Fq, respectively.

Remark 3.11. The integers e(a)) depend only on the connected component of Dyn(G) in

whose span « lies.

The definitions of (¢, (¢, and e(a) are chosen so that the following lemma holds.

Lemma 3.12. We keep the notation from above and let r € R.
(1) If ¥ € Gal(F,/K,) with y(o;) = o and v’ =1 — a(z, — xo,) € ['(G,), then

r _ re(a)(r—alrqg—xo,q))M o/
M) = (OO oM s

~ r' M+1
W(WFq F, :

mod @ .

(1) If ¥ € Gal(F/K) with ¥(o;) = a and r' :=r — a(x — xy) € I (G), then

~ _ re(a)(r—a(z—z0))M _ o’ r’
W(WFM):CG()( (w=z0)) @M mod wi Mt

Proof. If ¥ € Gal(F,/K,) with 3(a;) = a, then 3 = 75T for some integer 2. As
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V) (e’ M

el (G,) = mZ, we have C_GQK =1 and
~ _ _ela)+z o r’ _ re(a)r'M _p'M _ re(e)(r—alzg—z0,q)) M o/ r’
M) = @0l oMy = M M pelah ot s0 M M

which shows part .

In order to prove part , let ¥ € Gal(F/K) with (o) = «, and write 7 = y°w for
some integer ¢ and w € Gal(F/E N K*™¢). By Property of Definition and the
definition of e(a) there exists w € Gal(F/E N K%) such that v*®w(a;) = «, and
hence @™ ~Fw(a;) = a;, and therefore (7)"“%(a;) € Gal(F/E N K*%")(q;). On
the other hand, as the I"-orbits on ® agree with the Gal(F'/K)-orbits on ® and X7 =
X Gal(F/ENK™) 1y Property (ii)] of Deﬁnition and Lemma, the Gal(F/E N K%me)-
orbits on Gal(F/K)(a;) coincide with the (7/™)-orbits, which are the same as the (/")
orbits, where N; is coprime to p such that |Gal(F/K)(«;)| = p* N; for some integer s;.
Thus e(a) — e =0 mod N;. Note that C_GNiT/M = 1in F,, because r’ € T',(G) = ps+NiZ if
p#2andr’ €' (G) C mz if p = 2. Moreover, for g € Gal(F/ENK""®), g(wp) = wp

mod w% as all p-power roots of unity in Fp are trivial. Hence

i(w%’M) = ,y'e“(w;M) = 'Ce;-r/Mw;M — g(a)'(rfa(wq*fﬂo,q))Mw%’M mod w;jM+17
which proves part . O

Now let fr: TE — 5, be an isomorphism that identifies the root data R(G,) and R(¥).

Then we can extend fr as follows.

Lemma 3.13. There exists an isomorphism f : GI — %Fp extending fr such that for
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a € ® and u € G,(F,) we have

f@Fa(u) = xa(Cqo - u). (3.7)

Proof. Note that there exists a unique isomorphism f : GI' — %p extending fr and
satisfying Equation for all & € A. So we need to show that this f satisfies Equation
for all &« € . In order to do so, it suffices to show that the root group parameteriza-
tions {Aap, © Cataco form a Chevalley system of (% , 7 ) whose signs are e g (o, 3 € )
for {$_Fa}aeq>. If a and ( are linear combinations of roots in different connected compo-
nents of the Dynkin diagram of @, then €, ; = 1 = €, 3. Thus suppose a, € 7(®1),
and hence also s,(8) € 7(®;), for some v € Gal(F/K). By Remark this implies that

¢, = C_Ge(a) = C_Ge(ﬁ) = C_Ge(sa(ﬁ)). We obtain (using [4, Cor. 5.1.9.2] for the second equality)

Ad (10 (ea) a6 -a) (@) (Lie(tss, 0 2)(1))
— Ad (2@ M a0l T @) (ST Lieas, ) (1))
= Ad (" (@) Ad (D alean)w() (G Lietass, (1))

—B(z—z0)-M —a(z—x0)-M .

= C’y ’ : (Sa(ﬂ))(av(c'y ’ )) * €a,8 Lle(’(sa(ﬁ)ﬁpxl)
—B(s—z0) M ={aV,5a(B))a(z—z0)-M :

= C’y ’ ’ C’y ’ " €a,p Lle<7(3a(5)ﬁp>(1)
=(sa(8))(z—z0)-M .

= ¢ 7 eap Lie(x,9)5,) (1)

= Cap (Lie(?fsaw)@, ° Esaw))(l)) :

Thus the signs of the Chevalley system {;(QFP O Cq Jaco are €, as desired. O

Similarly, for each prime g, let fr, : ng — %q be an isomorphism that identifies the root
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data R(G,,) and R(¥). Then we have the analogous statement.

Lemma 3.14. There exists an isomorphism f : qu — %@q extending frq such that for

a € ® and u € G,(F,) we have

This allows us to define a map ¢ from 7 to ¢4 as follows.

Let . be a split maximal torus of 7. Then we have
X. () = X.(T,) = X.(S) = X, (1)K 3 X (T) = X,(F),

where the first identification arises from R(#) = R(G,,), the second from Lemma [2.5[ and
the fourth from R(¥) = R(G). This yields a closed immersion fo : . — 7. Note that

f# also corresponds to the injection
Xo(F) = X(T,) = Xo(S,) = Xo(T) S/ s X(T,) = X.(7),

and we have commutative diagrams

I I
% Ts, 7, T5,
F Fyq
Tm LK,F TIE qu LKq,Fq qu

To define ¢ on root groups, let {XHa}aeD(z”f):@K:@(Gz) be a Chevalley system for (7,.%)
such that there exists an isomorphism fr, : ,%”Fq — G, mapping qu to T,, and iden-

tifying (;(Ha)Fq with Z,,, or equivalently having the same signs as the Chevalley system

45



{Zq, }acoy, for some q # 2.

Moreover, note that for a € & = &(.7), there exists a unique integer in [1,n], denoted
by n(a), such that ®, N ®,,4) # O (see Remark [3.2] for the definition of ®;,7 € [1,n]). We
label the elements in ®, N,y by {O‘i}1g¢§]¢am® o] 5° that they satisfy the following two

properties:

e If a is a multipliable root, we assume that a; € [®,], where [®,] is as defined in

Section [2.1] (Note that a priori we have either oy or ay in [D,].)

e Let 4 be the generator of I as in Deﬁnition then for all a € @ with }(IJG N @n(a)‘ =
3, there exists a minimal integer €’(a) such that ' ¢(@) acts non trivially on ®,N D0y

and we require that 7'¢(a;) = as. (Note that this implies 7/¢ @ (as) = a3.)

We may (and do) assume that [®,] is chosen to be {7*(a1)]0 < i < |®q| — 1},

Definition / Proposition 3.15. There exists a unique group scheme homomorphism
L2 gy — Y5 extending fo such that for all Z-algebras A, a € ®() = Py and u € G,(A)

we have

W q(u)) = (3.9)
T/ )]

H 7(,y/(i71)(oé1)(\/éu)&y/(ifl)(al+a2)(—(—1)—a(x—a:0)Mu2)xpy/(i71)(OQ)((_1)—a(m—xo)M\/§u)
=1

if a is multipliable,

T/
L(xpg(u)) = H 211 () (—0) if a is divisible, and ~ (3.10)

’F//F (a)‘ ’@aﬁq?'n(a>|

o H H (=) O‘J)(C\@af:‘bjfaﬂ Yu)  otherwise, (3.11)
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where (; is a primitive i-th root of unity, 1 = 1,2 or 3, and I‘;l(a) = Stabp (Pp(a))-

Moreover, we have commutative diagrams

M, - G, I, - G,

:L fT': :j qu:

G, GF G, G.
LK, F xT q LKq,Fq q

for all primes q.

Proof. Combining Lemma [3.9 and Remark with Lemma [3.13] and Lemma [3.14]
we observe in view of Property of Remark and Lemma that f o txp o,
and f; o 1k, F, © T, are described by the (reduction of the) right hand side of the three
equations in the definition / proposition for all primes q. As tx, r, © %4, (and g poT, ) are
isomorphisms from G, to tx, r,(Uq,) (and tx #(U,)) for ¢ # 2 (and for p # 2), the signs of
the Chevalley systems {Z,, }aco, coincide with those of {Z,} and of {xz,} for all g. (Note
that 1 = —1 in characteristic two, i.e. the previous statement is trivial in this case.) This
implies for every prime ¢ the existence of an isomorphism G, ~ ,%%q that identifies T,

with S and Ty, with (1, )g, for all a € @, and similarly for G,.

Note that the Equations (3.9)), (3.10]) and (3.11]) in the definition / proposition define group

scheme homomorphisms f, : G, — %; over Z for a € ®(#). The maps {f,}sca(r) and
[» together with the requirement that xgm,(1)xm_,(€a,a)xm,(1) = fa(1)f-a(€aa)fa(1) for
a € A(H) define by [I7, XXIII, Theorem 3.5.1] a unique group scheme homomorphism
L g — 95 (The required relations asked for in [I7, XXIII, Theorem 3.5.1] can be
checked to be satisfied using that they hold in F, for all primes ¢ by the existence of ¢ Kq.Fy

(similar to the subsequent argument).)
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We are left to check that the Equations (3.9)), and hold for a € ® — A(57).
For this note that ¢(x.y(€a®)) = (1S s(en) fo(1)) tlra () (1) F sl (1)
for a € ®,b € A(F), where {€qp}apea, are the signs of the Chevalley system {xm, }aco-
For a,b € A(7), the trueness of the equations in the proposition for s,(a) for all u € G,(A)
is therefore equivalent to the vanishing of a finite number of polynomials with coefficients
in Z. As the latter vanish mod ¢ for all primes ¢, these polynomials vanish also over Z, and
the equations are satisfied for sy(a) (b,a € A(S€)), and hence by repeating the argument

for all roots a € ®. O

Remark 3.16. The morphism ¢ can be defined over Z[z]|/(x* — 1) = Z|(3] or even over Z
if none of the connected components of Dyn(G) is of type D, with vertices contained in

only two orbits.

In order to provide a different construction of 7 in Section [d], we use the following Lemma.

Lemma 3.17. Let ¢ be as in Definition / Proposition . Then 1 : A — Yy 1s a closed

1MMErsion.

Proof.

In order to show that (g is a closed immersion, it suffices to show that its kernel is trivial
([, Proposition 1.1.1]). As Q is of characteristic zero, the kernel of ¢ (a group scheme of
finite type) is smooth. Hence we only need to show that Lg 1s injective on Q-points. Let
g € (Q). Let W be a set of representatives of the Weyl group of % in the normalizer
of .. Without loss of generality, we assume that the elements of W are products of
xio(1)xm_q(€aa)xm,(1). Let U be the unipotent radical of the Borel subgroup corresponding
to A(2), U~ the one of the opposite Borel, and U,, = U(Q)NwU~(Q)w~'. By the Bruhat

decomposition, we can write g uniquely as ujwtuy, with w € W,te.” (Q), uy € Uy, and
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uy € U(Q). By the uniqueness 1 = t(g) = t(u1)e(w)e(t)e(ws) if and only if 1 = t(uy)
(t

w) =

implies ¢t = 1. Choosing an order of ®};, there is a unique way to write uy = Haeq)} X o (Uq)

) = t(uy). Note that «(w) = 1 implies w = 1 by our choice of W, and u(t) =

with u, € Q for all @ € ®}. By choosing a compatible ordering of the roots in ®* and
the uniqueness of writing ¢(u2) = [],co+ %(u)) with u, € Q together with the explicit
description of ¢ on root groups given in Definition / Proposition we conclude that
u, = 0 for all a € ®};, and hence uy = 1. Similarly, u; = 1, which shows that the map ¢ is

injective as desired. []

3.3.2 Global Moy—Prasad filtration quotients

In this section we will also lift the injections tx ry : Vi, — Vi cand g, et Ve, — Vf;r
in such a way that we get a lift of the commutative Diagram (2.11)). Using these injections

. F,
we view V,, as a subspace of VI and V., as a subspace of Vg, .

We begin with the construction of an integral model ¥ for V,,_,. Fix r € v(F) = v(F,)
(otherwise the Diagram ([2.11)) would be trivial) and let (y; be a primitive M-th root of
unity in Z compatible with (3 in Proposition , ie. if 3| M, then CM/S = (3. Let ¥
denote the composition of the action of 4" on Lie(.7)(Z[1/N]) induced from its action on
R(¥¢) = R(G) (as given by Definition , and multiplication by ¢t¥, and define ¥7 to be
the free Z[1/N]-submodule of Lie(.7)(Z[1/N]) fixed by ¥.

Next consider a € ®x. We recall that F’ denotes the stabilizer of the component Ci,,

of the Dynkin diagram Dyn(G) inside I", and set X, = Lie(x,)(1) € Lie(¥4)(Z[1/N]) for
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o € &. We define

|q>amq>n(a)| | /I‘n<a)|

(a -, (=a(zg—20,)+7) [T /T oy || PaNPra) | (i—1)
Y, = Z Z (< @G el T 0| I X

(3.12)

—a(zq—z0,q)+T) |F /F’( )||'I’ N, () ’(1 1)

(note that C‘(I’ € {1,-1,(3,¢2}) and let ¥ be the free Z[1/N]-

0|
submodule of Lie(%4)(Z[1/N]) generated by #7 and Y, for all a € ®f with r —a (v, —x0,) €
I (G,), or equivalently r — a(z — x¢) € I/ (G) by Lemma Note that ¥ as a Z[1/N]-

module is a direct summand of the free Z[1/N]-module Lie(%)(Z[1/N]).

Also note that the GI' representation VI is isomorphic to the adjoint representation of

,T

GI on Lie(GE) and, similarly, the qu representation qu r 1s isomorphic to the adjoint

representation of qu on Lie(Gx “). Hence the isomorphisms f : G = 9, and f;: G i)

%, from Lemma [3.13) and [3.14 yield isomorphisms df := Lie(f) : V, ~ Lie(GE)(F,) =

Lie(9)(F,) and df, := Lie(f,) : Vit = Lie(¢)(F,).

Proposition 3.18. The adjoint action of 9z, ,n on Lie(9)(Z[1/N)) restricts to an action
of Az n on V.
Moreover, for q coprime to N, we have df (V,,) = 1%, dfq(Va,r) = V5, and the following

diagrams commute

f—lOLde—ll: df—ll: fquLqufqll: dfqllz
Gx X V%T —>Vx,r qu X qu,r > Vﬂcq,r

Proof. We first show that df,(V,,,) = 75, for ¢ coprime to N and df(V,.,) = 75,

by considering the intersection of ¥ with the subspaces €D,cq(q) Lie(¥ )(Z[1/N]), and

acd(G

Lie(7)(Z[1/N]) of Lie(¢)(Z[1/N]) separately.
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For & € ®, denote by I, the stabilizer of a in I, and let X, = Lie(zFa,)(1), n, =
(@0 N @] € {1,2,3} and ¢ = Co, ) = G671 < i < n,. The image of

<”// NDocae) Lie(¥ )(Z[l/N})a) ®7(1/N] F, under df, " is then spanned by

’FI/F/ (a)‘ )+ )‘1—‘ /F' ’ (i-1)_
- lrM axq—xoq r (@) |Pali=1)__4 —
Yo = Z Z G Ci=1) (.05 70D ()
r —a(rq—0,q)+r N (i— —o(zg— M(j—1)=~
- Z Z Cy G=1)rM a n(a) ¢ (Tq—20,¢) M (j )XW/U*U(OH)
IF’/F'
— Z C (-1 (r—a(rq—z0,q)) M X G ()
IF’/F’

Z 'V/(j Y 041

for a € @ with r — a(z, — xo,4) € I, (Gy) (where (yr gets send to (g, under the surjection
Z[1/N] — F,). Here the action of I'" on V,,_, is the one induced from the action on gfg,r.
Thus by definition of the Moy-Prasad filtration and the inclusion ¢f, k,, constructed in

the proof of Lemma we obtain the equality

' (7%,) NEP Lie(GL) (Fy)o = (7 N @ Lie(#)(Z[1/N])a) ® Fy)
= Vi, NEPLie(GL1)(Fy)a (3.13)

inside V1, ~ Lie(G1?)(F,).

)T /T g (i1
In order to show the analogous statement for V., we claim that Cnaa 2204 H|0/T) e i-1) =

a(z—z0)+r)|T7 /T ng(i—1
7(% (a=a0) eI/ ) ) This is obviously true for p # 2 as a(x — zg) = a(zr, — zo,) in
this case. If p = 2, then (o, = —1 =1 in ]F and we only have the to consider the case
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Ng = |(I>a N @n(a)} = 3. However, n, = 3 implies that the corresponding component C, )
of the Dynkin diagram Dyn(G) is of type Dy, and hence b(a) = 0 for all multipliable roots
be ®2™ Thus a(z — 20) = a(z, — To,) by definition, see Equation (3.4), and the claim
Q(La“ 2q=20,0)+1) |I"/T, ) [mali=1) Cnaa 2=20,q)+7)|I"/T7, 4 |mali=1) follows. Let ¢y = Cg —e(y' (041))7
X, = Lie(zF,)(1), and use otherwise the same notation as above. Then there exists a set
of representatives [Gal(F/K)/ Stabgar k) ()] of Gal(F/K)/ Stabgayr/k)(e) such that
the image of (”// NDacae) Lie(%)(Z[l/N])a> ®zp /) Fp under df ! is spanned by

na |7/ T )47 [T /T, 4 [nai=1) _
J— r a Tq—T0 r na 11— _ J—
Yo = Z Z C vy M e " ¢ ’%j_l)(ai)XV(j_l)(ai)
=1 j=1
) —a(x—xg)+r o) | i— —alz—z
IR N e MO
IF /r;| ' o o
S M Y AR
j=1 v€[Gal(F/K)/ Stabgai(p) k) (@)

where the last equality follows from Lemma [3.12] Thus we obtain

“(%,) NP Lie(GL)(Fy)a = Vi, NED Lie(GL)(F,)a (3.14)

acd acd
inside VI ~ Lie(GE)(F,).

Let us consider 7. From the definition of the Moy—Prasad filtration t : of the Lie algebra
tg, of the torus Tg, together with Lemma and the observation that all p-power roots

of unity in F, are trivial, we deduce (by sending (yy ® 1 to (¢ under the isomorphism

Z[1/N] ®7(1/n] F, ~ F,, as above) that

df (te,pe (/45 )) = (Lie(Tu)(Z[1/N))"" @zp,x Fp.
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Moreover, by combining Proposition 4.6.2 and Proposition 4.6.1 from [20, Section 4.6], we
have t,, = (t5)%!(F/K) a5 B, is tamely ramified over K, and we obtain (using tameness

of Et/K> that

df (tor/torr) = df (¢80 /45 GHEEDY = ((Lie(fH)(Z[l/N]))ﬁN 70N F,,)ﬂ

= (Lie(Tu)(Z[1/N]))’ ®zp/m Fp = Y1 @zp1/3 Fy- (3.15)

For ¢ coprime to N, we denote by FE;, the tamely ramified extension of degree N of K.

Then we obtain by the same reasoning (substituting E; by E; )

dfq (tfrq,r/txq,r—l-) = Ir ®Z[1/N] Fq . (3-16>

Combing Equations (3.14)) and (3.15)), and (3.13]) and (3.16|), we obtain for ¢ coprime to N

that
df (V) = ”I/E and dfq(qu,,n) =75 .

q

In order to show that the adjoint action of ¥, v on Lie(¥ )(Z[1/N]) restricts to an action

of J7, v on ¥, we observe that the following diagram commutes

%, x Lie(9)(Z[1/N])z, — Lie(%)(Z[1/N])z,
fq_1><dfq_1J~ dfq_llw

F, F F,
G:ch X V:vg,r Vmg,r

Since g, r,(Gs,) preserves V, . (Equation (2.11))), we deduce that the induced action of

M, on Lie(9)(Fq) preserves 5 for all ¢ coprime to N. Hence the induced action of
A1 /n on Lie(& )(Z[1/N]) preserves ¥, and by construction and Lemma the diagrams
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in the proposition commute. 0

Theorem [3.7] is now an immediate consequence of Proposition [3.18

4 Moy—Prasad filtration representations and global

Vinberg—Levy theory

In this section we will give a different description of the reductive group scheme .7 and
its action on ¥ from Theorem as a fixed-point group scheme of a larger split reductive
scheme ¥ acting on a graded piece of Lie¥ (see Theorem [4.1). This means we are in
the setting of a global version of Vinberg—Levy theory and the special fibers correspond
to (generalized) Vinberg-Levy representations for all primes ¢. In order to give such a
description integrally (i.e. over Z[1/N]), we will specialize to reductive groups G that
become split over a tamely-ramified field extension in Section .1} Afterwards, in Section
m, we will then show that such a description holds over Q for all good groups. This will

also allow us to study the existence of (semi)stable vectors in Section [5]

4.1 The case of G splitting over a tamely ramified extension

Let S be a scheme, then we denote by ), ¢ the group scheme of M-th roots of unity
over S. We will often omit S if it can be deduced from the context. Given an S-group
scheme ¢, we denote by Autg /s its automorphisms functor, i.e. the functor that sends an
S-scheme S’ to the group of automorphisms of ¥s in the category of S’-group schemes,
and by Autg /s 1ts representing group scheme if it exists. We will often omit S if it can be

deduced from the context. Given, in addition, a morphism 6 : p,, ¢ — Aute, we denote by
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%° the scheme theoretic fixed locus of ¢ under the action of ), ¢ via 6, if it exists, i.e. ¢°
represents the functor that sends an S-scheme S to the elements of ¢(S’) on which g, &
acts trivially. If ¢? is a smooth group scheme over S of finite presentation, we denote by
490 its identity component. Similarly, if F is a quasi-coherent Og-module, we denote by
Aut r J0g 1S automorphism functor, and by Aut r /05 (or simply Autz) the group scheme

representing Aut o if it exists.

Theorem 4.1. Suppose that G is a reductive group over K that splits over a tamely ramified
field extension E of degree e over K. Letr = % for some nonnegative integer d < M, and
let A be the split reductive group scheme over Z[1] acting on the free Z[1]-module ¥ as
provided by Theorem i.e. such that the special fibers each correspond to the action of a
reductive quotient on a Moy—Prasad filtration quotient. Then there exists a split reductive

group scheme & defined over Z[%] and morphisms
0:py — Auty  and  dO : py, — AUtLie(%)

that induces a Z/MZ-grading Lie(¥9) = @M, Lie(9); such that 7 is isomorphic to 9%°, ¥

is isomorphic to Lie(9)y—a(Z[L]) and the action of A on ¥ corresponds to the restriction

of the adjoint action of 4 on Lie(¥)(Z[2]) via these isomorphisms.
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In particular, this implies that for q coprime to e we have commutative diagrams

(4.1)

Remark 4.2. If p is odd, not torsion for G and does not divide m, then, if we choose M
to be m, the left diagram in (4.1)) is proven to exist and commute in [15, Theorem 4.1].
The proof given in Loc. cit. does not work for all primes p, because it relies among others

crucially on the assumption that p does not divide m.

Proof of Theorem [4.11
Let €', f be integers such that e|e/, M = €'f, ged(¢/, f) = 1 and €’ is minimal satisfying
these properties. Let Eo be the splitting field of (¢ — 1) over E, and let O be the ring

of integers in F,.

We let & be a split reductive group scheme over Ox[2] C Z[1] whose root datum R(¥)
coincides with the root datum R(G) of G, i.e. ¢ is as defined in Section [3.3.1] base changed
to Oe/[é], and .7 denotes a split maximal torus of 4. Let G,4 be the adjoint group of
G. We have an isogeny G — G, and we denote the image of T under this isogeny
by Tuq. The isogeny induces an injection X, (7)) — X.(T,4) that yields an isomorphism
X, (T) @z R = X,(T,q) ®z R, which we use to identify the two real vector spaces. This

allows us to choose A € X, (T,4) C X.(T)®R such that z = o+ ﬁ)\. Note that then, using
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the identification of X, (T") with X,(T,q), we have z, = 4+ 3 A. We also denote by A the
corresponding element in X,(Z,4) C X.(7) ® R under the identification of X,(7") with
X, (7). Consider the action 0 of w,, on ¢ given by composition of the closed immersion

i, = G, with A and the adjoint action of ¢4,; on ¥, i.e.

QAZMM—)GWA%d‘—)deﬂAU_tg.

Let ¥ € Aut(R(G),A) denote the action of v/ € IV ~ Gal(E/K) on R(G) given in the

Definition of a good group, and denote by Z/ eZO /] the constant group scheme over

Spec O (2] corresponding to the group Z/eZ. Using the Chevalley system {x, : G, —
Uy C GYacow)=o for (¢4,T) (defined in Section [3.3.1), the automorphism ¢ defines a

morphism of Spec O.[2]-schemes Z/eZ

b — Autg. Note that we have an isomorphism
O.r[1/e]

of Spec Ou[t]-schemes p = Z/¢'Z [1/e]

again denote by 1,

that yields the following morphism, which we

’

e ST s Z)eT. Autyy .
Uty = Zfe oultfe /e oy Py

Fix an isomorphism p,, ~ p, % p;. This yields a projection map pase @ ppy — per, and

allows us to define 0 : p, — Autg as follows

i o x1d .
H:MM%;LMX“MLME,xuMﬂAutngutgﬂuE—)Autg.

By [5, Propostion A.8.10], the fixed-point locus of ¢ under the action of  is representable by

a smooth closed O./[1]-subscheme 49 of &. Moreover, by [5, Proposition A.8.12], the fiber

e

%g‘g ¥ is a reductive group for all geometric points 5 of Spec (’)e/[%]. Similarly, 790 = 790
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is a smooth closed subscheme of 7. Hence .77 is a split torus over Spec O, [2].

Let us denote 40 by 2#’. We claim that 77 is a maximal torus of #”. In order to prove
the claim for geometric fibers, we use a similar argument to one used in [7, Section 4]. Let ¢
be an arbitrary prime number coprime to e, Z the Borel of & corresponding to the positive
roots, and % its unipotent radical. As "5 _is a closed subgroup of % , #'5 /(%5 NH'5,)
is proper in gﬁq / %’Fq, hence is proper. Thus %’Fq N A’ F, s a solvable parabolic subgroup,
i.e. a Borel subgroup, and %’%’0 = '%Fq N ,%”’Fq. According to [I8] 8.2, aZ/FH is connected,
q q

and hence %g,o = %‘9’0 X 2. This means that ;7;’0 = %9,0 is a maximal torus of 5 .

q q q q q 4
Hence fgﬁ’o is a maximal torus in '3 for all geometric points s of Spec Oe/[%], because

the locus of the former points is open. This means that .77 is a maximal torus of J#.

In addition, Pic(SpecZ[2]) is trivial (by the principal ideal theorem), and hence the root
spaces for (%, ., J71,.) are free line bundles. Using that Spec Z[1] is connected, we

conclude that #”7, . is a split reductive group scheme.

If ¢ is a large enough prime number, then by [I5 Theorem 4.1] we have %/Fq ~ Gy, .
Hence R(") = R(7 ) = R(G,,) = R(J), and H7 ) is (abstractly) isomorphic to
JC as desired.

In order to give a new construction of 7, let d : Auty — AUtLie(%) be the map de-
fined as follows. For any O.[t]-algebra R, and g € Autg(R), define dg := Lie(g) €
Aut(Lie(¢4)r). Then the action df defines a Z/MZ-grading on Lie(¥¢), which we write as
Lie¥ = oM, (Lie9),.

We define #” to be the free Oy [1]-module Lie(¥)y—4(Oe[1]), and the action of #” := ¢%0

on ¥ should be given by the restriction of the adjoint action of ¢ on Lie(9)(O. [1]).
In order to show that the #’-representation on ¥ corresponds to the 7”7, ,-representation

on 7/2/[ we observe that ¥

"t /e 1 the M — d weight space of the action of ¥ - Ad(A(ar))
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for some primitive M-th root of unity (;; in Z[é] Using the notation introduced in Section
preceding Remark [3.11] we let Cy = ¢S M By the same arguments as in the
proof of Lemma 3.13| we see that there exists an automorphism h of &z, | that preserves

T7117¢) and sends 1, 10 %, 0 Oy for all a € P.

Let g be a large enough prime, to be more precise odd, not torsion for G and not dividing

M. Then we deduce from the arguments used in [I5], Section 4] that we have commutative

diagrams:
C C . =
g, Y S Lie()(F,)
fqlohbf/wth leq_loh Lie(fq_loh)L,//(]Fq)LN NLLie(fq_loh) (42)
F F,
qu LKq,Fq GwZ qu’T LKq,Fq,r Va::;,r

Moreover, the diagram on the right hand side is compatible with the action by the groups

of the diagram on the left hand side.

Recall that we constructed in Section amap ¢ : H — Gz,  and ¥ as a free Z[i)-
submodule of Lie(%)(Z[1]) such that we have the following commutative diagrams for all

primes ¢ coprime to e

ey, ¥4, S Lic(@)(F.)
j: :lfql ~ :LLie(fql) (43)
G, —— G V, ———— Vi1,
q Lqupq q q» LKq,Fq,'r q» Y

where the diagram on the right hand side is compatible with the action of the groups on
the left hand side by Proposition [3.18, Note that ik, r, is a closed immersion as either ¢ is
odd or e is odd (see Section [2.5)).

Thus we conclude that h~'(1(55,)) = 75, for large enough g.
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Let ¢ now be any prime coprime to e, and let § € S (F,). As 2 (Z[}]) surjects onto #(F,)

(because this holds for the root groups and the torus), we can choose g € #(Z[1]) whose
image in 27 (F,) is g. By combining the Diagrams and , we see that the image of
h~'i(g) in 4(F,) is actually contained in ##”(F,) for all sufficiently large primes ¢’. Hence
hu(g) € A(Z[2]) C 9(Z[L]), and b7 o (A (F,)) C H#'(F,). Since we observed that
H'g, is abstractly isomorphic to Gg, ~ h™" o f, (i, r,(Gz,)) = h™! 0 1(H ), we conclude
that

o) = A5, (4.4)

q

for all primes g coprime to e. The same arguments show that

Moreover, we claim that h™ o (/) = #'g. In order to prove the claim, note that
(Ha)g = Z/M Z@, and hence the action of the group scheme p,, on & corresponds to the
action of the finite group Z/M7Z generated by ¥-Inn(A((ar)). Therefore, by the construction
of t: Iy ) = Yap )¢ (see Proposition [3.15) and the definition of h : 9z, = 9z, We
see that h~' o u(2(Q)) C 9°(Q). As 1 : #5 — %y is a closed immersion by Lemma [3.17,
ht o o(Hy) ~ Hy ~ gg,o = Hg, and we conclude that

htouAy) = H'g. (4.6)

Thus, as 7 ,Z[l Je] 18 smooth over Spec Z[%], hence reduced, we deduce from the Nullstellen-
satz that h™' o1 : 0 — Y711/ factors via the closed subscheme 77, , of %, ), i.e. we
may write h=' o1 0 — H'%, . As we proved that (h™" o)+ HL — (A7) is an

isomorphism for all s € Spec Z[%] (see Equation (4.4)), (4.5, (4.6])), we conclude that by [6]
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17.9.5] the morphism h™' o v : H# — H#'7, , is an isomorphism.

Moreover, as Lie(h)(¥; ) = Y5, for large enough primes ¢, we deduce that Lie(h) :
Lie(4)(Z[2]) — Lie(9)(Z[%]) yields an isomorphism of the direct Z[]-module summands

/
7/Z[l/ ]

and 7.
As the action of J on ¥ was defined via the adjoint action of ¥, D «(#) onto

Lie(%; /e})(Z[%D D ¥, the isomorphisms

— / . — / . d 1
h 1 : % — %Z[l/e] = gzeflo/e] and Lle(h 1) . /V — Z[l/e] = Lle(gZ[l/e})M_d (Z[g])

map the action of # onto ¥ to the action of (%, ;)" on Lie(%z[l/e})M_d(Z[é]) which
arises from the restriction of the adjoint action of 4, ., on Lie(%, /e])(Z[l]).

e

The commutative diagrams in the theorem now follow by applying Theorem [3.7] O

Remark 4.3. Let E. be as defined in the proof of Theorem Denote by Ey the Hilbert
class field of E. and by Oy the ring of integers in Fy. Then the group schemes ¢ and ¥

and the action of .7 on ¥ appearing in Theorem can be defined over Spec O H[%]

4.2 Vinberg—Levy theory for all good groups

Even though the Moy—Prasad filtration representation of groups that do not split over
a tamely ramified extension might not be described as in Vinberg-Levy theory, its lift to
characteristic zero can be described using Vinberg theory, i.e. as the fixed-point subgroup of
a finite order automorphism on a larger group acting on some eigenspace in the Lie algebra
of the larger group. To be more precise, we have the following corollary of Theorem
combined with Theorem 3.7
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Corollary 4.4. Let G be a good group over K, r = % for some nonnegative integer
d < M, and let the representation F acting on ¥ be as in Theorem[3.7]. Then there exist

a reductive group scheme %z over Q and morphisms

0:py — Autg@/@ and dO : py — AUtLie(%@)/@

such that g ~ %@?’0 and ¥ ~ Lie(%5)vm-a(Q), and the action of Sy on Vg corresponds

via these isomorphisms to the restriction of the adjoint action of %5 on Lie(%@)(@).

Proof. Let ¢ be a prime larger than p°N. Then, by construction, the representation

over Z[pslN] associated to G, via the proof of Theorem agrees with the representation
of Jp1 /s ny) O0 P peny- As Gy splits over a tamely ramified extension, Theorem

allows us to deduce the corollary. O

5 Semistable and stable vectors

In this section we apply our results of Section [3|and Section [4|to prove that the existence of
stable and semistable vectors in the Moy—Prasad filtration representations is independent
of the characteristic of the residue field. Recall that a vector v in a vector space V over
an algebraically closed field is stable under the action of a reductive group Gy on V if the
orbit Gyv is closed and the stabilizer Stabg, (v) of v in Gy is finite. A vector v € V is

called semistable if the closure of the orbit Gy v does not contain zero.
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5.1 Semistable vectors

The global version of the Moy—Prasad filtration representation as provided by Theorem

allows us to show that the existence of semistable vectors is prime independent as follows.

Theorem 5.1. We keep the notation used in Theorem i particular G is a good

reductive group over K and x € B(G, K). Then the following are equivalent

(i) V., has semistable vectors under the action of G,.
(ii) Vg, has semistable vectors under the action of G, for some prime q coprime to N.

(iii) Vg, has semistable vectors under the action of G, for all primes q coprime to N.

Proof. We first show that implies . Suppose that holds, i.e. that V,_, contains
semistable vectors under G, for some prime ¢ coprime to N. This implies by [T, Proposi-
tion 4.3] that V/@q has semistable vectors under the action of G , where 5 and 7 are as
in Theorem . By [13], p. 41] this means that there exists a %q—invariant non-constant
homogeneous element P, in Sym 7}@(1' Moreover, there exists X € 75 C ”//@q such that
P,(X) # 0, i.e. X is semistable in ”//@q under the action of /7 . Hence X # 0 is also
semistable in ¥G under the action of 7, which implies (Sym ”/@)f @ +# Q. Thus, there
does also exist a J#(Z)-invariant non-constant homogeneous element P in Sym ”/72. As P
is non-constant and homogeneous, we can assume without loss of generality that the image
P of Pin Sym7;®F, ~ Sym 7}?,7 is non-constant. Note that J#(Z) surjects onto 2(F,),
which follows from the surjections on all root groups and the split maximal torus. Hence
P is s (F,) ~ G,(F,)-invariant and there exists X € ¥5, = Va, such that F(X)#£0, ie.
X is semistable by [13 p. 41]. Thus |(i)|is true.
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The same arguments show that if G, , has semistable vectors, then G, _, has semistable

vectors for all primes ¢ coprime to IV, i.e. implies . As implies we conclude
that all three statements are equivalent. O
Note that the same holds for the linear duals Vx,r and \V/'xq,r of Vi, and V,_, using ¥

instead of ¥ in the proof above:

Corollary 5.2. We use the same notation as above. Then Vm has semistable vectors
under the action of G, if and only if \v/'xqm has semistable vectors under the action of G,
for some prime q coprime to N if and only if V%r has semistable vectors under the action

of Gy, for all primes q coprime to N.

Remark 5.3. For semisimple groups G that split over a tamely ramified extension and
sufficiently large residue-field characteristic p, Reeder and Yu classified in [15, Theorem 8.3]
those x for which \V/'x,r contains semistable vectors in terms of conditions that are indepen-
dent of the prime p. Corollary allows us to conclude that these prime independent
conditions also classify points x such that V., contains semistable vectors for all good

semisimple groups G (without any restriction on the residue-field characteristic).

5.2 Stable vectors

In this section we show an analogous result to the one in Section for stable vectors.
This allows us to generalize the criterion in [I5] for the existence of stable vectors in the
dual of the first Moy—Prasad filtration quotient to arbitrary residual characteristics p and

all good semisimple groups, which in turn produces new supercuspidal representations.

Theorem 5.4. We keep the notation used above, in particular G is a good reductive group

over K and x € #(G, K). Then the following are equivalent
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(1) V., has stable vectors under the action of G,.
(ii) Va,r» has stable vectors under the action of G, for some prime q coprime to N.

(iii) Vg, has stable vectors under the action of G, for all primes q coprime to N.

Proof. We suppose without loss of generality that r = % for some nonnegative integer

d< M.

Assume that is satisfied, i.e. there exists a prime ¢ coprime to N such that V, .

contains stable vectors under the action of G, .

As was pointed out to us by Beth Romano, a slight variation of the proof by Moy and
Prasad of [12, Proposition 4.3] shows that then 7/,(1 contains stable vectors under %%q,
where 7 and ¥ are as in Theorem [3.7

Recall that by Corollary , Ay =~ gg,o and G ~ Lie(%5)r—a(Q) such that the action of
J5 on Vg corresponds via these isomorphisms to the restriction of the adjoint action of
“5 on Lie(%@)(@). Let ¢y be a primitive M-th root of unity in Q, denote %gCM)MM’M)’O
by ¢', its Weyl group by W', and let ¥ be the action of 6({y;) on the root datum R(%@ ).
q
Then by [14] Corollary 14], the existence of stable vectors in ”//@q is equivalent to the action
of 8(¢y) on §% (or, equivalently, on ¢’) being principal and % being the order of an

elliptic Z-regular element of W’1J. Hence we conclude by the same equivalence for the prime

p that there exist stable vectors in ”//fp under the action of %ﬁ.

Thus the set of stable vectors (”//@p)s in ”f/@p is non-empty and open (see [13]). Hence
there exists a nonzero polynomial P in (’)(”V@p) =0(73,) @7, Q, ~ Zy[x1, ...,z ®z, Q, =
@p [1,...,x,] such that the @p—points of the closed reduced subvariety V (P) of ”//@p defined
by the vanishing locus of P contain (“I/@p — (”//@p)s) > 0. We can assume without loss of

generality that the coefficients of P are in Z,, i.e. P € O(7z,) C (’)(“I/@p), and that at least
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one coefficient of P has p-adic valuation zero. Let P be the image of P under the reduction
map O(77) ~ Zylzn, .. a0 = O(75,) ~ F,[z1,...,2,]. Then P is not constant, because
P(0) =0, and there exists X € ¥5, =V, such that P(X) #0.

We claim that X is a stable vector under the action of G,. We will prove the claim
using the Hilbert-Mumford Criterion that states that a vector is stable if and only if it has
positive and negative weights for every non-trivial one-parameter subgroup, see [13]. Let
2X:G,, = G, ~ jé%p be a non-trivial one parameter subgroup. Then )\ is defined over some
finite extension of F,,, and hence by [16, IX, Corollaire 7.3] there exists a lift A : G,,, — A,
of . The composition of A with the action of ji”zp on 7/2,, yields an action of G,, on ”f/zp, and
we obtain a weight decomposition ”f/zp = ®mezVm. Denote @pez_, ¥ by ¥4 and @rez_ Vi
by V. e Y5 =V @ %OV, Let X € ¥ be alift of X, and write X = X+ Xo + X
with X_ € 2, X, € %, Xy € ;. Note that the weight decomposition of ¥ under the
action of G,, via the composition of A with the action of A5, on g Is the image of the
decomposition V2 & ¥ @ V4, ie. (¥5)- = Bmezoo(¥5,)m = (V)5,, (Y5, )o = (Yo)5, and
(7%,)+ = ®mez-o(¥5,)m = (¥4 )7, Hence X =X_+ Xo+ X, (where an overline denotes
the image after base change to Fp) has positive and negative weights with respect to \ if

and only if v(X_) =0 = v(X).

Suppose that v(X_) > 0. Then P(X) = P(Xy + X,) modulo the maximal ideal of Z,.
However, X+ X is not a stable vector, because it has no negative weights with respect to
the non-trivial one parameter subgroup A Xz @p, which implies P(Xy + X ;) = 0. Hence
P(X) = 0 contradicting the choice of X. The same contradiction arises if we assume that
v(X_) > 0. Thus, X has positive and negative weights for every non trivial one parameter
subgroup, i.e. X is stable by the Hilbert-Mumford criterion. Hence, statement of the

theorem holds.
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The same arguments show that if G, , has stable vectors, then G, , has stable vectors

for all ¢ coprime to N, i.e. implies . As implies , the three statements are

equivalent. n

As in the semistable case, the same proof works for the linear duals of the Moy—Prasad

filtration quotients:

Corollary 5.5. We use the same notation as above. Then VM has stable vectors under
the action of G, if and only if v%T has stable vectors under the action of G, for some
prime q coprime to N if and only if qu,r has stable vectors under the action of G, for

all primes q coprime to N.

Denote by r(x) the smallest positive real number such that V,,) # {0}, and let p =

3 Z+ &, where ®* are the positive roots of ® = ®(G) (with respect to the fixed Borel
acd

B). Then Corollary allows us to classify the existence of stable vectors in V(. for

arbitrary primes p and good semisimple groups below. This generalizes the result of [15]

Corollary 5.1] for large primes p and semisimple groups that split over a tamely ramified

extensions.

Corollary 5.6. Let G be a good semisimple group and x a rational point of order m in
(S, K) C B(G,K). Then V, . contains stable vectors under G, if and only if x is
conjugate under the affine Weyl group W of the restricted root system of G to xo+ p/m,
r(z) = 1/m and there exists an elliptic Z-reqular element wy' of order m in W~', where W
is the absolute Weil group of G and v is the automorphism of R(G) given in the definition
of a good group (Definition .

Proof. Note that by Lemma the order of x, is m, and by Theorem [3.7, we have

r(z,) = r(z). Let ¢ be sufficiently large, i.e. coprime to M, not torsion and odd. Then G|,
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is a semisimple group that splits over a tamely ramified extension, and we deduce from the
proof of [15, Lemma 3.1] that vx”(xq) can only admit stable vectors under G, if z, is a
barycenter of some facet of o, = <7(S,, K,), and hence r(x,) = 1/m. Therefore, as ¢ is
chosen sufficiently large, we obtain by [I5, Corollary 5.1] that qu,r(xq) has stable vectors if
and only if z, is conjugate under the affine Weyl group W,g, of the restricted root system
of G, to x4+ p/m, r(x) = 1/m and there exists an elliptic Z-regular element w~y’ of order
m in W+', because W is isomorphic to the absolute Weil group of GG;. Note that
Ty ~Wag, Togq+p/m ifand only if  z ~w,, 20 + ! Z v(Aa) -G+ %,

4

+,mul
a€®

and o+ 1 Y. v(A\) - a+ p/m is conjugate to zo + g/m under the extended affine
aeq)-};,mul

Weyl group of the restricted root system of G. However, by checking the tables for all
possible points x, whose first Moy—Prasad filtration quotient qu,r(zq) admits stable vectors
in [14] and [15], we observe that the latter conjugacy can be replaced by conjugacy under
the (unextended) affine Weyl group. Hence using Corollary [5.5, we conclude that \v/'x,r(l,)
contains stable vectors under the action of G, if and only if © ~yw,, o+ p/m, r(z) = 1/m,

and there exists an elliptic Z-regular element of order m in W+~/. O]

Recall that k is a nonarchimedean local field with maximal unramified extension K.

Corollary 5.7. Let G be a good semisimple group, and suppose that G is defined over
k. Assume that W~ contains an elliptic Z-reqular element. Then using the construction
of [15, Section 2.5] we obtain supercuspidal (epipelagic) representations of G(k') for some

finite unramified field extension k' of k.

Proof. Let m be the order of an elliptic Z-regular element of W+, and z = x¢ + p/m €

(S, K). By Corollary [5.6, V() contains stable vectors under the action of G,. Since =
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is fixed under the action of the Galois group Gal(K/k), the vector space V() is defined
over the residue field f of k. Hence there exists a finite unramified field extension k' of
k with residue field § such Vm(x) contains a stable vector defined over f'. Applying [15]

Proposition 2.4] yields the desired result. O]

6 Moy—Prasad filtration representations as Weyl mo-

dules

In this section we describe the Moy—Prasad filtration representations in terms of Weyl
modules. Recall that for A\ € X*(.¥) a dominant weight, the Weyl module V(\) (over
Z[1/N)) is given by

V() = indgl_{(—wo)\)v,

where Ay is the Borel subgroup of .7 corresponding to A(.77), %, is the opposite Borel
subgroup, wy is the longest element of the Weyl group of ®(s#), and (.)" denotes the dual
([8, 11.8.9]). We define

O, = {a€Pk|r—alr—mx) el(G)}

v = {a€ P, lat+bg d,, forallbe ¥ (H) C Pk} .

6.1 The split case

If G is split over K, then

v ={ae®|r—alr—x) €Za+ ¢ foral fd(H)Cd}.
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Theorem 6.1. Let G be a split reductive group over K, r a real number and x a rational
point of B(G, K). Let ¥V be the corresponding global Moy-Prasad filtration representation

of the split reductive group scheme J over Z (Theorem . Then

» Lie(#)(Z) if v is an integer

B comx V(X)) otherwise .

Proof. If r is an integer, then we have by Theorem that ¥ ~ Lie(9)u(Z) =
Lie(9%)(Z) = Lie(2#)(Z).

Suppose 7 is not an integer. Then ¥ C Lie(¢)(Z) is spanned by X, = Lie(x,)(1) for
a € ®,, (Section [3.3.2]). Thus the weights in ®}'>* are the highest weights of the rep-
resentation of # on 7, and we have %5 =~ @AEQE{?" V(N)g- In order to show that
YV ~ @, com V(A), it suffices by [8, 11.8.3] to prove that {%(Z)(Xa)}a@ﬁx spans ¥/,

i.e. that <<%”(Z)(Xa)> contains &, for all o € ®,,. Let a € ®,,\®;*. Then there

acpmax
exists § € @1 () such that o+ § € ®. Let N, g > 0 be the maximal integer such that
a+ NopB € @, and let N 5 be the maximal integer such that a — N_ ;6 € ®. We claim

that X, + N8 € (H(Z)(X,)) implies that X, € (J(Z)(X,)) which will

max max
OZE‘I)Z’T O‘E(I)a:,'r

imply the theorem by induction.

Suppose that X, + Nogf € (J(Z)(X,)) Note that No s + N, 5 € {1,2,3}, and

agdpax’
recall that
Navﬁ—'—No;,ﬁ
2o(W) (Xainaas) = D Mapitl Xap(v, p-pp With mess € {£1}, (6.1)
=0

for u € G,(Z). By varying u € G,(Z) and taking linear combinations, we conclude that

X, is in the Z-span of {%(Z)(Xa)}ae¢$gx. O
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The following corollary follows immediately by combining Theorem [6.1] and Theorem [3.7]

Corollary 6.2. Let G be a split reductive group over K, r a real number and x a rational

point of B(G, K). Then the representation of G, on 'V, is given by

Lie(G,)(F,) if v is an integer

Drcomax V(N5 otherwise .

Vg, >~

Remark 6.3. Note that, if p is sufficiently large, then V()\)Fp is an irreducible representa-

tion of G, of highest weight \.

6.2 The general case

Let a € ®77* and let %y be the unipotent radical of #y. By Frobenius reciprocity, we

have ([8, Proof of Lemma I1.2.13a)])

Hom - (V(a), Lie(%)(Z[1/N])) ~ Hom,, (Lie(g)(Zu /N])Y, 1Hd§;1(—w0a))
~ Hom,,- (Lie(9)(Z[1/N])", —woa)
~ Homy,_ (wa, Lie(%)(Z[1/N])) =~ ((Lie(g>(2[1/]v])%>a.
Using these isomorpisms, the element Y, € ((Lie(%)(Z[l/N])%H> C Lie(9)(Z[1/N])
yields a morphism V(a) — Lie(¥)(Z[1/N]) of representations of .. This morphism is

an injection, and we will identify V' (a) with its image in Lie(¥)(Z[1/N]).

Theorem 6.4. Let G be a good reductive group over K, r a real number and x a rational
2N if g contains multipliable roots
point of B(G,K). Let N' =

N otherwise .
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Then

Vo = (P7)zp 8 + @ V(Nzpnn C Lie(%)(Z[1/N") (6.2)

A€ pmax

as representations of e%”z[l /N

Proof. The subspace ¥ y, C Lie(9)(Z[1/N']) is spanned by ¥+ and Y, for a € @,
(Section [3.3.2). Thus, analogously to the argument in the proof of Theorem it suf-

fices to show that (JZ(Z[1/N'])(Y.), ¥r) contains Y, for all b € ®,,. Let a €

max
aedpy

@g}i"\@zm, b e ®,, with a+b € ®,,, and N, > 0 the maximal integer such that

@+ Nopb € ®,,. We need to show that Yoy, ,» € (J(Z[1/N'))(Y,), 7)
Y, € (A(Z[1N')(Ya), V)

implies

a€pmax

acmae We assume Yoy n, 5 € (F(Z[1/N'])(Y,), 7/T>ae<1>gcn;-zx and

distinguish four cases.

Case 1: aR # bR and b is not multipliable. In this case the result follows from the proof
of the split case (Theorem and Equation on page and on page
(if b is non-divisible) or Equation (3.10)) on page |46/ and Equation (3.12)) (if b is
divisible).

Case 2: aR = bR and b is not multipliable. In this case a = —(a+ N,;b), and the element
sp in the Weyl group of # corresponding to reflection in direction of b sends Yoy, ;5

t0 £Y_ (g4n, b = £V,. Hence Y, € (A(Z[1/N']))(Ya), V1)

agPmax-

Case 3: aR # bR and b is multipliable. By taking Galois orbits over different connected
component and using Equation on page and Equation on page , it
suffices to consider the case that Dyn(G) = A, with non-trivial Galois action. We
label the simple roots of by a,,, a1, ..., a0, a1, b1, B2, ..., B, as in Figure [1] on page
. Then b is the image of ;4. . .+, for some 1 < s < n, and, as (b¥,a + N,,b) > 0,

the root a + N, b is the image of
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—(asy1 + ...+ ag,) for some s < s1 < n, or
g, + ...+ g for some 1 < s9 <'s, or

a1+ ... +as+ b1+ ...+ Bs, for some 1 < s3 < sors<sg<n.

To simplify notation, we will prove the claim for the case that b is the image of a; and

a+ N, pb is the image of —as. All other cases work analogously. Combining Equation

(3:9) on page [46, Equation (3.12)) on page [p0] and Equation (6.1) on page [70] and

using that 7%, . preserves the subspace #7, v, of Lie(¥ )(Z[1/N"]), we obtain that

?(H—b(u)(ya-s-]va’bb) = (7( 31(\/_14) a1+,81( (_1)b(:c xo) M 2)7(. a1(( )b(:v—xo)M\/iIo)

(X—52 + <_1) (—(a—i—Na,bb)(;rq—;vqu)+r)~2)cv_a2)

= Yoin, bb+mab1\/_UYa+(Nab Db+ My 4ot Ya+( ap—2)b

with my, ,my ,, € {F1}, forallu € G, (Z[1/N"]). Since 2 | N, taking Z[1/N']-linear
combinations of Yo n, ,b+ml 1 V2uYor (N, y— 1)+ 4 58 Yy (N, ,—2) for different v im-
plies that Yo, (v, ,-1» and Yoy (v, ,—2) are contained in <J“f Z[1/N')(Yy), 7/T>
so Y, € (H(Z[1/N'))(Ya), 7/T>a@w.

agpmax?

Case 4: aR = bR and b is multipliable. As in Case 3, we can restrict to the case that
Dyn(G) = As,, and we may assume that b is the image of a;. Then a + N, b is the
image of oy or the image of a; + f;. If N, denotes the largest integer such that
a—N, b € @, then Ya_N(;bb is conjugate to =Y, n, ,» under the Weyl group. Hence
Ya_N(;bb € (A (Z[1/N"))(Yy), 7/T>ae<1>gg<;ax' If a+ Ny pb is the image of aq, then N, = 0,

and we are done. Thus, suppose that a + N, ;b is the image of o + .
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Recall that for a € ® and H, := Lie(&)(1), we have ([4, Corollary 5.1.12])

7(_—04(“) (Xoa) - Xa + Ea,QUH—a - Ea,auzx—a

Xo(u)(H) = H+ Lie(a)(H)uX_,

for all u € G4(Z[1/N']) and all H € Lie(.7)(Z[1/N']). Using these identities, we

obtain

xm_p(w) (Y;H-Na,bb) = (9(__31 (\/Eu) X—ai—p (_(_1>b(x—aco)Mu2>?C_a1 ((_1)b(ac—a;0)M\/§u)>

(Xa1+ﬁ1)
= Yain,p + My V2uYay v, ,-0p + H +mi V2P Yoy (v, -

" 4
Mg 4 U Yar (N, y—a)bs

with m; |, m; 3 € {£1}, mg, € {£1,£3} and H € ¥7. As Yoy (n,,—ap = Yo N

a1y '"a

and H are in (J(Z[1/N'))(Y,), V) and since 2 | N’, we also obtain that

agPmax”
Yo (Nyy—1)p and Yoy (n, ,—ap are contained in (S (Z[1/N'))(Y,), V1) O

max *
acPR

1

Corollary 6.5. Let G be a good reductive group, r ¢ PN

7 a real number, and x a rational
point of B(G, K). Suppose that either p is odd or that ®x does not contain any multipliable

root. Then

Proof. If r ¢ ﬁZ, then ¥7 = {0}, and the claim follows by combining Theorem [6.4] and
Theorem
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