
Problem sheet 11 Rigid analytic geometry Winter term
2024/25

Recall the notions of filter, ultrafilter and limit from sheet 1. In the
case of a topological space which is not Hausdorff, ultrafilters may have
more than one limit. But it is easy to see that the set of limits of an
ultrafilter F is always closed. In particular, every specialization of a
limit of F is a limit of F. We say1 that x is a generic limit of F if it is
a limit of F and every limit of F is a specialization of x. We say that
ultrafilters on X have unique generic limits if every ultrafilter on X
has precisely one generic limit.2 If X has this property, then a subset
A ⊆ X is called closed under generic limits iff the generic limit of every
ultrafilter containing A belongs to A. Obviously the set of such A is
closed under finite unions and arbitrary intersections and contains all
closed subsets of X.

Problem 1 (6 points). Show that a topological space is spectral if and
only if it has unique generic limits of ultrafilters and the set of open
subsets which are closed under generic limits of ultrafilters in X is a
topology base.

In this case it turns out that an open subset is quasicompact if and
only if it is closed under generic limits. More generally, a subset of X is
closed under generic limits if and only if it is closed for the constructible
topology.
Let Γ be an ordered abelian group. It will be written multplicatively

and 0 is assumed to be a non-element of every such Γ occuring in the
following considerations, and 0 < g for all g ∈ Γ. By a valuation on a
ring R we understand a map

R v−−→ Γ ∪ {0}

such that

• v(xy) = v(x)v(y) for x, y ∈ R.
• v(x+ y) ≤ max

(

v(x), v(y)
)

.
• We have v(0) = 0 and v(1) = 1.

If follows that suppv =
{

r ∈ R
∣

∣ v(r) = 0
}

is a prime ideal of R. In the

following we will always assume that Γ is generated by v
(

R \ suppv
)

,
although this assumption is inconventient for some purposes and is
often not made. Making this assumption we say that v is equivalent to
a valuation ṽ if there is an order preserving isomorphism Γ ι−→ Γ̃ such
that ṽ(r) = ι

(

v(r)
)

for all r ∈ R, where we put ι(0) = 0. The set of

1This is my terminology. I do not know whether it is in common use
2For instance, this the case for compact spaces.
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equivalence classes valuations of R is denoted SpvR. Valuations will
often be written |r|, whith the distinction between different valuations
indicated by a subscript like |r|x.
We will primarily be interested in the case of a ring A which is

equipped with some nat-topology.

Problem 2 (2 points). Show that the following conditions are equiva-
lent:

• For all a ∈ A\suppv,
{

α ∈ A
∣

∣ v(α) < v(a)
}

is a neighbourhood
of 0 in A.

• For all γ ∈ Γ,
{

α ∈ A
∣

∣ v(α) < γ
}

is a neighbourhood of 0 in
A.

We say that v is continuous if this holds. Obviously, continuity of
v depends only on the equivalence class of v. The set of equivalence
classes of continuous valuations on A is denoted Cont(A). If f ∈ A
and (gi)

m
i=1 ∈ Am we put

R(f |g1, . . . , gm) =

=
{

x ∈ Cont(A)
∣

∣ |f |x 6= 0 and |gi|x ≤ |f |x for 1 ≤ i ≤ m
}

We equip ContA with the topology generated by the subbase containing
all R(f |g1, . . . , gm) with the property that the ideal of A generated by
f and the gi is open. Since adding f to the list of gi does not change
R, the topology does not change if we impose the sharper condition
that the ideal generated by the gi must be open. When applied in the
case of the discrete topology on a ring R this also defines a topology
on Spv(R).
If x ∈ Cont(A) and a, b ∈ A, we put a �x b if |a|x ≤ |b|x. Obviously

this is a transitive and reflexive relation on A. Let a ≺x b if |a|x < |b|x,
or, equivalently, a �x b but not b �x a. Throughout the next four
problems we always fix x and drop the subscript x.

Problem 3 (1 point). Show that a 6� 0 if and only if A�a =
{

b ∈ A
∣

∣

b ≺ a
}

is a neighbourhood of 0 in A.

Problem 4 (2 points). Show that b � c implies ab � ac for all a ∈ A
where the opposite implication holds if a 6� 0.

Problem 5 (1 point). For a ∈ A, show that A�a is a subgroup of
(A,+).

Problem 6 (1 point). For a, b ∈ A, at least one of a � b or b � a
always holds.
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Problem 7 (8 points). Let � be a transitive and reflexive relation on
A such that 1 6� 0. Put a ≺ b iff a � b and b 6� a, assume that
the conditions from Problems 3 to 6 hold. Show that there is a unique
x ∈ Cont(A) such that �=�x.

Let F be an ultrafilter on Cont(A). We say that a ∈ A is F-essential
if

Da =
{

b ∈ A
∣

∣

∣

{

x ∈ Cont(A)
∣

∣ |b|x < |a|x
}

∈ F

}

is a neighbourhood of 0 in A. Otherwise we say that a is F-inessential.
Moreover, we put a � b iff at least one of the two conditions

a is F-inessential(1)

or
{

x ∈ Cont(A)
∣

∣ |a|x ≤ |b|x
}

∈ F(2)

holds.

Problem 8 (1 point). Show that � is transitive.

It is obvious that� is reflexive. From our definition of “F-inessential”
it is also obvious that the condition of Problem 3 holds for �.

Problem 9 (1 point). If b is F-essential and a � b, show that (2)
holds.

Problem 10 (2 points). Show that the set of F-inessential elements of
A is an ideal in A.

Problem 11 (1 point). Show that � satsfies the condition of Problem 5

Problem 12 (1 point). Show that � satisfies the condition of Prob-
lem 6.

To proceed with the proof that Cont(A) is a spectral space we need
some additional assumptions on A, like

(A) If U is a neighbourhood of 0 in A then so is

{

m
∑

i=1

uivi
∣

∣ m ∈ N and ~u,~v ∈ Um
}

,

(B) Every open ideal I ⊆ A contains a finitely generated open ideal

or

(C) For every neighbourhood U of 0 in A

there are m ∈ N and ~u ∈ Um such that Am ·~u−−→ A is open.
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as well as

(N) Aoo is a neigbourhood of 0 in A.

Obviously each of these conditions holds for A if A has an open subring
satisfying this condition. Moreover (C) implies (A) and (B).

Problem 13 (3 points). If A satisfies (A), show that � satisfies the
condition of Problem 4.

Problem 14 (1 point). If A satisfies (N), show that 1 6� 0.

From now on we assume that A satisfies (A) and (N). Then it fol-
lows from Problem 7 that there is a unique l ∈ Cont(A) such that
�=�l. For showing that this is a generic limit of F we study rational
open subsets Ω = R(f |g1, . . . , gm) ⊆ Cont(A), assuming that the ideal
〈f, g1, . . . , gm〉A is open.

Problem 15 (2 points). If l ∈ Ω, show that Ω ∈ F.

If follows that l is a limit of F. From now on we assume that A also
satisfies (C).

Problem 16 (4 points). If Ω ∈ F, show that l ∈ Ω.

Problem 17 (1 point). Show that l is a generic limit of F.

Problem 18 (1 point). Show that Cont(A) is a spectral space.

Nineteen of the 39 points from this sheet are bonus points which
are not counted in the calulation of the 50%-threshold for passing the
exams. Solutions should be e-mailed to my institute e-mail address
(my second name (franke) at math dot uni hyphen bonn dot de) before
Wednesday January 25.
The remaining part of this text contains no problems and may be

skipped without endangering ones chances to solve the above problems,
understand the rest of the lecture or pass the exam.
If A is an ordinary ring and I ⊆ A an ideal, the I-adic topology on

A is the topolgy for which
{

In
∣

∣ n ∈ B
}

is a neighbourhood base of
0. A topological ring is called adic if there is an ideal I such that the
topology conincides whith the I-adic topology. In this case every such
ideal is called an ideal of definition for A. It is clear that any adic ring
satisfies (A) and (N) above. If a finitely generated ideal of definition
can be found, then (B) and (C) also hold.
I do not know whether there a good characterization of nat-rings for

which Cont(A) is a spectral space exists in the literature. As of today
(2025-01-08) the non-Archimedean Scottish Problem Book of Kedlaya
contains to entry which seems to be equivalent to this question.
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Huber calls a nat-ring f-adic if it contains an open subring (called
a ring of definition which is adic and has a finitely generated ideal of
definition. Nowadays most people call such rings Huber rings. By the
remark made after formulating (N), Huber rings satisfy all conditions
(A), (B), (C) and (N). Therefore the results from this sheet imply the
theorem of Huber that Cont(A) is a spectral space when A is an adic
ring. If A is a Tate ring with pair of definition (A♯, s) then A♯ is adic
and sA♯ an ideal of definition for A♯. Therefore A is a Huber ring. It
is easy to see that every ring of definition of a Huber ring is bounded.
Therefore our old notion of “ring of definition” in the Tate case is a
special case of this new notion “ring of definition” for Huber rings.
Let A be an affinoidK-algebra whereK is complete and non-discrete

with non-Archimedean absolute value |·|. Also, let always s ∈ K× ∩
Koo. For every x ∈ Sp(A), a → |a(x)| defines a continuous valuation
of A. But in general not every element of Cont(A) is obtained in this
way. For instance, if A = Tn then a → ‖a |Tn‖ defines an element of
Cont(A). This is not given by an element of Bn = SpTn but rather
corresponds to a van der Put-point ξ of Bn. To define it, let k = Ko/Koo

be the residue field of K and recall the map

B
n ρ−−→ mSpeck[X1, . . . , Xn] =: X

from Definition 2.4.7 in the lecture. If Ω = RSpTn
(f |g1, . . . , gm) is

a rational open subset3 with ‖f |Tn‖ ≥ ‖gi |Tn‖ for all i, then by
Fact 2.4.14 there is an open Zariski-dense U ⊆ X such that ρ−1U ⊆ Ω.
For the same reason, if ‖gi |Tn‖ < ‖f |Tn‖ for some i then there is a
proper Zariski-closed subset Z ⊆ X such that Ω ⊆ ρ−1Z. One easily
concludes that the set ξ of open subsets U containing an Ω of the first
kind is a van der Put-point of Bn.
In general, if ξ ∈ X∗ with X = Sp(A) we put a � b if and only if

RX(b|a, s
n) ∈ ξ for all n ∈ N. By Problem 7 this defines an element x =

xξ of Cont(A). If a ∈ Ao then RX(1, a) = X by Corollary 2.4.3 from
the lecture. Thus it follows that |a|x ≤ 1 for all x ∈ Ao. But for most
affinoid K-algebras A, not every element of Cont(A) has this property.
For instance, let A = T1 and Γ = |K×| × Z ordered lexicographically
and with the first factor being more significant. For f =

∑∞

j=0 fjT
j ∈

A \ {0}, define |f |x ∈ Γ by

|f |x =
(

‖f |T1‖ ,max
{

j ∈ N
∣

∣ |fj| = ‖f |T1‖
}

)

.

3The subscript SpTn is to distinguish rational open subsets of SpTn as introduced
in the lecture from the rational open subsets of Cont(A) introduced earlier
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Then T ∈ Ao but |T |x > 1. Intuitively, this continuous valuation would
correspond to a van der Put-point of B1 capturing the behaviour of
|f(x)| if x ∈ K is outside of but close to the unit ball B1. But of
course no such van der Put-point exists since the general element of T1

is simply undefined outside B
1.

Because of this, one considers

Spa(A⊲, A+) =
{

x ∈ ContA
∣

∣ |a|x ≤ 1 for all a ∈ A+
}

=
⋂

a∈A+

RContA(1|a)

where the condition for a Huber pair4 is that A⊲ must be a Huber ring
and A+ ⊆ Ao a subring which is open and integrally closed in A. By
the second line of the above definition this is a proconstructible subset
of ContA hence a spectral space.
If A is an affinoid K-algebra, X = Sp(A), ξ ∈ X∗ and xξ as above

then xξ ∈ Spa(A,Ao). The inverse construction associates to x ∈
Spa(A,Ao) the van der Put-point ξ = ξx defined by the condition that a
rational subset Ω = RX(f |g1, . . . , gm) is ∈ ξ if and only if |f |x ≥ |fi|x for
all i. This condition does not depend on the particular representation of
Ω as it is equivalent to the condition that |·|x has a (unique) continuous
extension to the affinioid K-algebra OX(Ω).

4Called “affinoid ring” by Huber himself


