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This work introduces an application of differential geometry to cartography.
The mathematical aspects of some geographical projections of Earth surface are
revealed together with some of its more important properties.

1. Introduction
An important problem since the discovery of the ‘spherical’ form of the Earth is

how to compose a reliable map of the surface of the Earth that could prove useful
for navigation. In many cartography texts scarce mention is made of the mathe-
matics inherent to mathematical development. At the same time, the few texts on
differential geometry (or vector calculus) that consider this problem have some
pedagogical deficiencies: (a) the historical origin of the problem is not generally
mentioned; (b) concepts are not always defined with clear explanation of their
origin and application; (c) formulas are used without much explanation of their
derivation.

This work attempts to overcome this. The content is easily understandable for
a first or second year university student (with a certain degree of knowledge of
the calculus of several variables) and it can be used as support in the study of
Euclidean space surfaces. The aim is not a thorough study of terrestrial projec-
tions, but an overall view of the difficulties that arise by means of the study of some
important projections. The name projection derives from the surface of the Earth
being projected in different manners, in a plane, a cylinder or a cone (all surfaces
with null Gaussian curvature). The relevance of this work lies in a new approach
that is used to present some classical projections (see [2] for a review of the usual
projections). This work aims to show how methods from calculus can also be a
valid alternative. The intuitive ideas that a student needs for understanding
calculus of several variables are reinforced.

First, let us recall some notation. The partial derivative of a function f ¼ f ðu, vÞ
relative to variable u will be denoted by fu. All functions will be considered as
infinitely differentiable. The usual inner product in R3 of vectors u and v will be
denoted by hu,vi; while the Euclidean norm of vector u is denoted by kuk. Lastly,
l will always denote the geographical longitude; and ! will denote the geographical
latitude. Both angles are measured in radians; thus, " 2 ½0, 2#½ and ! 2% & #=2,#=2½.
The radius of the Earth will be denoted by R.
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2. Maps and the conformality property
A map is a piece of paper representing the Earth partially. Mathematically

speaking, a map is a subset D of R2, such that given a point ðu, vÞ 2 D (in the map),
a unique point in Earth can be associated to it. The situation is modelled according
to a function r as follows:

r : D ! Earth r ¼ rðu, vÞ ðu, vÞ 2 D ð1Þ

It is well known that the surface of a sphere cannot be represented in a plane
without a simultaneous distortion in lengths, angles and areas. This statement is a
trivial consequence of the Gauss egregium theorem [1, p. 234]. Therefore, a map
representing the Earth without distortions cannot be proposed. The angles in the
map need to be preserved for the sake of practical calculations in navigation.
Therefore, if the angle between two curves is measured in the map, then, it should
be equal to the angle between the curves on the Earth. This is a fundamental
property, since angles point towards the correct course.

What does model (1) require in order to preserve its angles (that is to be
conformal)? We denote by E ¼ hru, rui, F ¼ hru, rvi and G ¼ hrv, rvi.

Since straight lines in the map u ¼ constant, v ¼ constant are perpendicular,
if model (1) preserves angles then F¼ 0.

On the other hand, for ða, bÞ 6¼ ð0, 0Þ,

$ ðtÞ ¼ ðu0, v0Þ þ t ð1, 0Þ % ðtÞ ¼ ðu0, v0Þ þ t ða, bÞ

are the parametric equations of two straight lines in the map that intersect
when t¼ 0, that is to say, in the point P0 ¼ ðu0, v0Þ. Evidently, if  is the angle
formed by these straight lines, then cos ¼ a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. As r must preserve

angles,  is the angle formed by rð$ ðtÞÞ and rð% ðtÞÞ in Earth, which is nothing
more than the angle determinated by their tangent vectors in rðP0Þ. Now, it is easy
to check that

dðrð$ ðtÞÞ
dt

""""
t¼0

¼ ruðP0Þ and
dðrð% ðtÞÞ

dt

""""
t¼0

¼ aruðP0Þ þ brvðP0Þ

Since F ¼ 0, then

cos ¼
dðrð$ðtÞÞ=dt

""
t¼0

, dðrð%ðtÞÞ=dt
""
t¼0

# $

dðrð$ðtÞÞ=dt
""
t¼0

%%%
%%% ( dðrð%ðtÞÞ=dt

""
t¼0

%%%
%%%
¼ aEffiffiffiffi

E
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2E þ b2G
p

Comparing this last equation with cos ¼ a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
and simplifying, then E¼G

is obtained.
Also, obviously, if E¼G and F¼ 0, then r preserves angles. Therefore, the

following result is obtained:

Theorem 2.1. Function r preserves angles if and only if E¼G and F¼ 0.

3. The Mercator projection
Let us suppose that the map is rectangular1; equally spaced meridians are

represented on the map with equally spaced vertical lines (which requires the
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introduction of a constant A such that !u ¼ A!"), equally spaced parallels are
represented on the map with equally spaced horizontal lines (which again requires
the introduction of another constant B such that !v ¼ B!!). Therefore, if H is
the horizontal width of the map and if V is the vertical width,

r : ½0,H% ) ½0,V% ! Earth

then, the point on the map with coordinates (u, v) corresponds to the point on the
Earth with longitude "ðuÞ ¼ Au and latitude !ðvÞ ¼ Bv (see figure 1). Then,

r : D ! Earth, rðu, vÞ ¼ Rðcos ðBvÞ cos ðAuÞ, cos ðBvÞ sin ðAuÞ, sin ðBvÞÞ

and functions E ¼ R2A2 cos2ðBvÞ and G ¼ R2B2 are clearly different. So, for
Theorem 2.1, this model does not preserve angles.

It is natural then to modify this model so that it is able to preserve angles.
In order to do this, let "ðuÞ be the latitude of point rðu, vÞ and !ðvÞ its longitude.
As before, the meridians are represented by means of vertical lines and the
parallels with horizontal lines. Then,

r : D ! Earth, rðu, vÞ ¼ Rðcos ð!ðvÞÞ cos ð"ðuÞÞ, cos ð!ðvÞÞ sin ð"ðuÞÞ, sin ð!ðvÞÞÞ

It is easy to check that

E ¼ R2 d"

du

& '2

cos2ð!ðvÞÞ F ¼ 0 G ¼ R2 d!

dv

& '2

ð2Þ

In order for function r to preserve angles, E¼G and F¼ 0 must hold; that is to
say, cos ð! ðvÞÞd"=du ¼ *d!=dv. The negative sign is discarded since both l and !
are supposed to be increasing functions (this assumption will also be applied
later on). And so,

d"

du
¼ 1

cos !

d!

dv
ð3Þ

Since the first member of equation (3) depends only on u, and the second member
of equation (3) depends only on v, both members must be equal to a constant K.
Now, two trivial differential equations arise that need to be solved:

d"

du
¼ K

1

cos! ðvÞ
d!

dv
¼ K ð4Þ

Applications of differential geometry to cartography 31

u

v

Equator

Parallel

Meridian

u

v
Equator

ParallelMeridian

r(u,v)

Figure 1. Representation of the Earth on a rectangular map.



whose respective solutions are the following:

u ¼ 1

K

Z
d" ¼ "

K
v ¼ 1

K

Z
d!

cos!
¼ 1

K
log tan

!

2
þ #

4

& '& '
ð5Þ

The Mercator projection has just been found. Mercator is the Latinised name of
the Flemish cartographer Gerard Kremer, who obtained this projection in 1569
with different methods from those presented in this paper (see for example the
paper [4] about the Mercator projection and how Gerard Kremer developed it).

The constant K is closely related with the scale of the map. It is easily proven
that 1 cm on the map’s equator represents KR cm on the surface of the Earth.
However, 1 cm along a parallel of latitude !, corresponds to KR cos! cm on the
map. The Mercator projection highly distorts distances (and areas as we will see)
around the poles. Normally, the Mercator projection is only used when regions are
not too close to the poles.

The Mercator projection presents another important advantage. Loxodromes
(constant direction curves on the Earth) are important in navigation. What form
will loxodromes have in a Mercator projection?

Since a loxodrome forms a constant angle with the meridians, the representa-
tion of a loxodrome on the map forms a constant angle with the verticals. If  is
this angle, then it is easy to deduce that the equation of the loxodrome (on the map)
is the straight line u ¼ v tan þC. This is very important, since the loxodromes
are widely used for navigation, and in a Mercator projection these are represented
with the simplest curve: the straight line. Also, for (5),

" ¼ log tan
!

2
þ p

4

& '& '
tan þ c

where c is a constant that is found by knowing that the loxodrome passes through a
given point.

3.1. The Mercator projection is not suitable for international politics
The Mercator projection is suitable for navigating. However, it is not useful in

politics or in geography teaching. This projection severely distorts areas, as seen in
figure 2. As an example, India and Scandinavia seem to be of the same size and
in fact, India is over three times larger than Scandinavia. And something similar
occurs with Europe and South America; when, South America is almost twice the
size of Europe! Let us see the reason for this.

Let D ¼ ½u1, u2% ) ½v1, v2% be a rectangular piece of the Mercator projection.
This region, represented on the Earth, is rðDÞ. Since E¼G and F¼ 0, then

AreaðrðDÞÞ ¼
ZZ

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG& F2

p
dudv ¼

ZZ

D
E dudv ð6Þ

Whenusing equations (2) and (4), we obtainE ¼ G ¼ R2ðd!=dvÞ2 ¼ R2K2 cos2 !ðvÞ;
then, denoting !u ¼ u2 & u1,

AreaðrðDÞÞ ¼
ZZ

D
R2K2 cos2 !ðvÞdudv ¼ R2K2!u

Z v2

v1

cos2 !ðvÞdv ð7Þ

This integral will not be computed (although it can be done, since cos ! ¼
1= coshðKvÞ can be obtained from (4)); but it will only be analysed in a qualitative
way. Due to the factor !u in (7), the area depends on the increment of longitudes;
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but not on the longitudes. This indicates that the Mercator projection does not
distort distances in the East–West direction.

However, since cos2 ! ðvÞ decreases as ! approaches *#=2 (the poles) we can
conclude that as D moves away from the equator, then rðDÞ will have smaller area.
This explains why two regions with the same area on the Earth have different sizes
on the Mercator projection, since the area closer to the poles will be represented as
larger than the other one.

4. The stereographic projection
As we have seen, the Mercator projection is not suitable for polar region

cartography. For these particular regions stereographic projection (and other
methods) are used instead.

Let us consider the Earth with equation x2 þ y2 þ z2 ¼ R2 and oriented in such
a way that the North Pole is at ð0, 0,RÞ. Given ðu, vÞ 2 R2, the point rðu, vÞ is
defined as the intersection of the terrestrial surface with the straight line joining
the North Pole with point ðu, v, & RÞ. The following statement can be proven:

rðu, vÞ ¼ R

u2 þ v2 þ 4R2
ð4Ru, 4Rv, u2 þ v2 & 4R2Þ ðu, vÞ 2 R2 ð8Þ

as well as

E ¼ G ¼ 4R2

u2 þ v2 þ 4R2

& '2

F ¼ 0

which indicates that the stereographic projection preserves angles.

Applications of differential geometry to cartography 33

Figure 2. Mercator projection.



Let D be the circle (on the map) with its centre in the origin and with radius s.
It is an exercise (based on a computation of a double integral using polar
coordinates and equation (6)), which in the area of rðDÞ (on the Earth) is
4#R2&2=ð&2 þ 4R2Þ (if & ! 1 the area of the Earth is obtained. These types of
verifications are very helpful for teaching). So

AreaðDÞ &AreaðrðDÞÞ ¼ #&2 & 4#R2&2

&2 þ 4R2
¼ #&4

&2 þ 4R2

which explains why the stereographic projection faithfully represents areas close to
the South Pole; but distorts areas closer to the North Pole.

Next, a more in-depth study of a stereographic projection will be shown.
In this projection, meridians are represented by means of semi-straight lines and
parallels are represented by means of concentric circumferences. Is this the only
projection satisfying both this property and the conformality property? Evidently,
using polar coordinates ', ( on the map, instead of Cartesian coordinates u, v, is
suitable. Which property should r ¼ r ð', (Þ satisfy in order to preserve angles?
The characterization of Theorem 2.1 will be used. In order to do this, coefficients
Ep ¼ hr', r'i, Fp ¼ hr', r(i and Gp ¼ hr(, r(i, will be associated to aforementioned
coefficients E ¼ hru, rui, F ¼ hru, rvi and G ¼ hrv, rvi. Since u ¼ ' cos (, v ¼ ' sin (,
according to the chain rule,

r' ¼ ru cos ( þ rv sin ( r( ¼ &'ru sin ( þ 'rv cos ( ð9Þ

We shall use matrices in order to simplify the calculations. Equations (9) can be
written as

r'
r(

( )
¼ cos ( sin (

&' sin ( ' cos (

( )
ru
rv

( )
that is Dp ¼ PD

where r', r(, ru, rv are row vectors. Denoting

G ¼ hru, rui hru, rvi
hrv, rui hrv, rvi

( )
Gp ¼

hr', r'i hr', r(i
hr(, r'i hr(, r(i

( )

then

Gp ¼ DpD
T
p ¼ ðPDÞ ðPDÞT ¼ PDDTPT ¼ PGPT ð10Þ

Since P is a nonsingular matrix, it is easy to characterize when rð', (Þ is conformal.

Theorem 4.1. The function r preserves angles if and only if Gp ¼ '2Ep and
Fp ¼ 0.

The proof is as follows:

r is conformal , E ¼ G,F ¼ 0 , G ¼ )I ,Gp ¼ )PPT , Gp ¼ '2Ep,Fp ¼ 0,

where ) is a real function that in this case coincides with E and G. œ

Let us suppose that r ¼ rð', (Þ projects meridians in semi-straight lines starting
from the origin and parallel in circumferences centred in the origin. Then

r ð', (Þ ¼ R ðcosð!ð'ÞÞ cos ð"ð(ÞÞ, cos ð! ð'ÞÞ sin ð"ð(ÞÞ, sin ð! ð'ÞÞÞ ð11Þ
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As in section 3 it is easy to check that

Ep ¼ R
d!

d'

& '2

Fp ¼ 0 Gp ¼ R cos !
d"

d(

& '2

Using a similar argument to that seen in section 3, if r is conformal, there exists a
constant K 2 R such that

'

cos!

d!

d'
¼ K ¼ d"

d(

and solving both differential equations (including the integration constants
denoted here by A and B)

tan
!

2
þ #

4

& '
¼ A'K " ¼ K( þ B ð12Þ

If a complete parallel is navigated on Earth, longitude l has an increment of 2#.
On the map, this journey is represented by means of a circumference centred at the
origin, in which case, the increment of ( is of 2# and therefore K¼ 1. Obviously,
the constant B is associated with the meridian of reference. At the moment,
Greenwich meridian is universally accepted as such. From now on, B¼ 0 will be
taken. Now, from the first part of equation (12), the following can be proven

cos ! ¼ 2A'

A2'2 þ 1
sin! ¼ A2'2 & 1

A2'2 þ 1

Substituting these expressions in equation (11):

rð', (Þ ¼ R

A2'2 þ 1
ð2A' cos (, 2A' sin (,A2'2 & 1Þ ð13Þ

What is the meaning of the constant A? First, if the unit of length is denoted by L;
since r is a position and R, ' are lengths, then the units of A should be L&1.
Second, the stereographic projection should be a particular case of expression (13).
Expression (8) in polar coordinates is

rð', (Þ ¼ R

'2 þ 4R2
ð4R' cos (, 4R' sin (, '2 & 4R2Þ ð14Þ

In order for expression (13) to be similar to (14), it must be divided and multiplied
by A2 in (13); and it is denoted d ¼ 1=A, obtaining

rð', (Þ ¼ R

'2 þ d2
ð2d' cos (, 2d' sin (, '2 & d2Þ ð15Þ

Now, it is evident that the stereographic projection is a particular case of
expression (15): it is enough to take d ¼ 2R. Curiously, 2R is the distance between
the North Pole and the plane where the Earth is projected. Is this by chance? If r is
the straight line that joins the North Pole with polar coordinate point ð', (Þ (which
is located in the horizontal projection plane located d away from the North Pole),
then the intersection of the sphere with straight line r is rð', (Þ, which explains the
geometric meaning of the constant d.

Also, the scale of the map is related to this constant d, as illustrated in figure 3,
which is the flat equivalent of the stereographic projection.
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5. The problem of the areas
We have just observed how both the stereographic and Mercator projection

do not preserve areas. What condition would be necessary and sufficient so that
r preserves areas, that is, is there a constant K 2 R such that K ( AreaðRÞ ¼
Areaðr ðRÞÞ for all R + D? The constant K represents the scale of the map.

Let ðu0, v0Þ 2 D be an arbitrary point of the map, and let R be a region of the
map containing this point. Then, according to the theorem of the mean of double
integrals, there exists ðuR, vRÞ 2 R such that

K ( AreaðRÞ ¼ AreaðrðRÞÞ ¼
ZZ

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG& F2

p
dudv ¼ AreaðRÞ (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG& F2

p
jðuR, vRÞ,

that is K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG& F2

p
jðuR, vRÞ. Recall that K does not depend on R. And making

R ! ðu0, v0Þ, then ðuR, vRÞ ! ðu0, v0Þ. Hence
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG& F2

p
evaluated in (u0, v0)

equals K. Since (u0, v0) is arbitrary, then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG& F2

p
is constant (and equals K).

This result can be summarized in the following theorem.

Theorem 5.1. The function r preserves areas if and only if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG& F2

p
is a

(positive) constant.

The necessary condition has been shown and the sufficient condition is evident.

5.1. The Lambert projection
As an application of Theorem 5.1, we shall find a projection that is able to

preserve areas from a model similar to the Mercator model. Let us suppose that the
projection

r : D ! Earth, rðu, vÞ ¼ Rðcos ð!ðvÞÞ cos ð"ðuÞÞ, cos ð!ðvÞÞ sin ð"ðuÞÞ, sin ð!ðvÞÞÞ
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preserves areas. Then condition (2) is satisfied as in the Mercator property. If r
preserves areas, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG& F2

p
must be constant; and therefore, there exists K

such that

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG& F2

p
¼ R2 d"

du

d!

dv
cos! ¼) K

R2

du

d"
¼ d!

dv
cos!

As the left-hand side depends only on u and the right-hand side depends only on v;
so there exists a constant L such that

K

R2

du

d"
¼ d!

dv
cos ! ¼ L

Two simple differential equations arise whose solutions are (omitting the integra-
tion constants)

u ¼ LR2

K
" v ¼ 1

L
sin!: ð16Þ

The Lambert projection has just been obtained (except for a small modification that
will be described next). Why are there two constants K and L, when there is only
one in the Mercator projection? Due to the fact that if a transformation preserves
areas, it is possible distances are increased in one axis and decreased in another
(for example, think about the linear transformation of R2 ! R2 given by
Tðx, yÞ ¼ ð$x, y=$Þ, where $ 2 R n f0g). A constant will be chosen so that this
distortion of lengths is equal for the two axes. This projection preserves areas;
but not angles, since

E ¼ K2 cos2 !

L2R2
G ¼ R2L2

cos2 !
, E 6¼ G

Near the equator, the latitude ! is approximately equal to 0, and therefore
E ’ K2=ðL2R2Þ and G ’ R2L2. If near the equator this model (approximately)
preserves angles, then E ’ G (remember that always F¼ 0). Therefore it is natural
to choose for L, the value

ffiffiffiffiffi
K

p
=R. And so expression (16) becomes

u ¼ Rffiffiffiffiffi
K

p " and v ¼ Rffiffiffiffiffi
K

p sin!

which is the Lambert projection.

5.2. The problem of the areas in polar coordinates
Finally, we shall find a necessary and sufficient condition so that r ¼ rð', (Þ

preserves areas. We must consider the condition found at the beginning of section 5
in terms of coefficients Ep,Fp,Gp (defined in section 4). But looking for this
relationship is an arduous task if matrices are not used. Observe that

EG& F2 ¼ detG EpGp & F2
p ¼ detGp

and because of the relationship (10) among G and Gp, we get

detGp ¼ detðPGPTÞ ¼ ðdetPÞ2 detG ¼ '2 detG

Now the following theorem is evident.

Theorem 5.2. The function r ¼ rð', (Þ preserves areas if and only if there
exists a constant K > 0 such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EpGp & F2

p

p
¼ 'K.
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Following a similar argument to those considered above, a projection of the
type in expression (11) that preserves areas is possible.

6. Conclusions
Some well-known projections have been found and studied. Others can be

found in the literature on geodesy and cartography [2]. In geodesical studies,
geometrical methods are applied to analyse the projections. However, we have
shown that analytic methods can also be a valid alternative and those necessary can
be found in [3].
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