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1. Clifford algebras

Let V be a real (or complex) Hilbert space with an isometric

involution

α : V → V

(C-anti linear in the complex case). Write v̄ := α(v). Then we

get by

b(v, w) := 〈v̄, w〉
a symmetric bilinear form on V .

Write −V for the Hilbert space furnished with the involution

−α.

Definition 1. The tensor algebra of V is

T (V ) :=

∞∑
i=0

⊗i
V.

Let Ib(V ) be the ideal in T (V ) generated by all elements of

the form

v ⊗ v + b(v, v) · 1
for v ∈ V . We define then

Cl(V, b) := T (V )/Ib(V )

to be the Clifford algebra associative to V and b.
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Remark 2.

(1) There is a natural embedding V ↪→ Cl(V, b)

(2) We have

vw + wv = −2b(v, w) · 1

for all v, w ∈ V .

Universal property of Cl(V, b):

Let f̃ : V → A be linear with A an associative algebra with

unit such that f̃ (v)f̃ (v) = −b(v, v) · 1 for all v ∈ V . Then f̃

extends uniquely to a homomorphism of algebras

f : Cl(V, b) → A.

Examples 1.

(1) Cn := Cl(Rn) generated by vectors v ∈ Rn subject to

the relation v · v = −|v|2 · 1
(2) C−n := Cl(−Rn) generated by vectors v ∈ Rn subject

to the relation v · v = |v|2 · 1
(3) Cn,m := Cl(Rn⊕−Rm) generated by vectors v ∈ Rn and

w ∈ Rm subject to the relation v · v = −|v|2 · 1,w ·w =

|w|2 · 1 and vw + wv = 0.

Define now ε̃ : V → Cl(V, b) by ε̃(v) := −v and extend this

map to the involution ε : Cl(V, b) → Cl(V, b). Then there is

a decomposition

Cl(V, b) = Cl0(V, b)⊕ Cl1(V, b)

into the eigenspaces of ε, which makes Cl(V, b) to a Z2-graded

algebra. Cl0(V, b) is called the even part and is a subalgebra

of Cl(V, b).
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Remark 3.

a) Cl(V ⊕ W ) ∼= Cl(V )⊗̂Cl(W ), where ⊗̂ is the Z2-

graded tensor product:

(v ⊗ w) • (v′ ⊗ w′) := (−1)|w||v
′|vv′ ⊗ ww′

for v, v′ ∈ Cl(V ) and w,w′ ∈ Cl(W ) with pure degree.

b) Cl(−V ) ∼= Cl(V )op, where Cl(V )op is the Clifford al-

gebra with the following new multiplication:

v1 ∗ v2 := (−1)|v1||v2|v2 · v1

for v1, v2 ∈ Cl(V ) with pure degree.

Definition 4. A Z2-graded module over Cl(V ) is a module

W with a decomposition W = W 0 ⊕W 1 such that

Cli(V ) ·W j ⊆ W i+j

for i, j ∈ {0, 1}.

Any graded left Cl(V )⊗̂Cl(W )-module M can be interpre-

ted as a Cl(V )− Cl(W )op-bimodule via

v ·m · w := (−1)|m||w|(v ⊗ w)m

for pure degree elements v ∈ V, w ∈ W and m ∈ M and vice-

versa. Together with Remark 3 we can identify left Cl(V ⊕
−W )-modules with Cl(V )− Cl(W )-bimodules.

Definition 5. Let M be a graded Cl(V )−Cl(W )-bimodule.

We get the opposite M of M by changing the grading and

keeping the same Cl(V ⊕−W )-module structure.
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Theorem 6. Let V be a inner product space of dimension

n. Then we can identify orientations on V with isomor-

phism classes of irreducible graded Cl(V )− Cn-bimodules.

The opposite bimodule corresponds to the opposite orien-

tation.

Definition 7.

P (V, b) := {v1 · . . . · vr ∈ Cl(V, b) | b(vi, vi) 6= 0, r ∈ N}

Pin(V, b) := {v1 · . . . · vr ∈ Cl(V, b) | b(vi, vi) = ±1, r ∈ N}

Spin(V, b) := Pin(V, b) ∩ Cl0(V, b)

Theorem 8. Let V = Rn ⊕ −Rm and Spinn,m the corre-

sponding spin group.

SOn,m := SO(V, b)

:= {λ ∈ Gl(V ) | b(λ(v), λ(v)) = b(v, v), det(λ) = 1}

Then there is a short exact sequence

0 → Z2 → Spinn,m
ζ0→ SOn,m → 1

for all (n,m). Furthermore if (n, m) 6= (1, 1) this two-sheeted

covering is non-trivial over each component. In particular

in the special case

0 → Z2 → Spinn
ζ0→ SOn → 1

(where Spinn := Spinn,0 and SOn := SOn,0) this is the uni-

versal covering of SOn for all n ≥ 3.
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2. Spin structures ans spinor bundle

Let E be an oriented n-dimensional riemannian vector bund-

le over a manifold X . Let PO(E) be its bundle of orthonormal

frames. This is an principal On-bundle.

Choosing an orientation on E is equivalent with choosing a

principal SOn-bundle PSO(E) ⊂ PO(E).

Definition 9. Suppose n ≥ 3. A spin structure on E is a

principal Spinn-bundle PSpin(E) together with a two-sheeted

covering

ζ : PSpin(E) → PSO(E)

such that ζ(pg) = ζ(p)ζ0(g) for all p ∈ PSpin and g ∈ Spinn.

When n = 2 a spin structure on E is the same with replacing

Spin2 by SO2 and ζ0 : SO2 → SO2 by the connected 2-fold

covering.

When n = 1 a spin structure is just a 2-fold covering of X .

Theorem 10. Let E be an oriented vector bundle over a

manifold X. Then there exists a spin structure on E if and

only if the second Stiefel-Whitney class of E is zero. Fur-

thermore, if w2(E) = 0, then the distinct spin structures

on E are in 1-to-1 correspondence with the elements of

H1(X, Z2).

Definition 11. A spin manifold X is an oriented riemannian

manifold with a spin structure on its tangent bundle.

Examples 2. Let X = S1. Then there are two distinct spin

structures on X (hence H1(S1, Z2) = Z2):
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PSO1(S
1) ∼= S1 and there are two 2-fold coverings of S1

ζ1 : S1 × Z2 → S1 and ζ2 : S1 → S1.

These are the two spin structures.

Let X = T 2. Then there are four distinct spin structures on

X (hence H1(T 2, Z2) = Z2 × Z2):

PSO2(T
2) ∼= T 2 × S1 and there are four 2-fold coverings ζi :

T 2 × S1 → T 2 × S1:

ζ1(x, y, z) := (x, y, z2),

ζ2(x, y, z) := (x, y, xz2),

ζ3(x, y, z) := (x, y, yz2),

ζ4(x, y, z) := (x, y, xyz2)

These are the four spin structures.

Construction: Let E → X be a principal G-bundle and

let F be another space on which the group G acts. Then G

acts on E × F by

g · (e, f ) := (eg−1, gf )

for g ∈ G, e ∈ E and f ∈ F . Define E ×G F := E × F/G.

This is a fibre bundle over X , called the bundle associated to

E with fibre F .

Definition 12. The Clifford bundle of the oriented rieman-

nian vector bundle E is the bundle

Cl(E) := PSO(E)×SO Cn.
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Definition 13. Let E be oriented riemannian vector bundle

with a spin structure ζ : PSpin(E) → PSO(E). A real spinor

bundle of E is a bundle of the form

S(E) = PSpin(E)×Spin M

where M is a left module over Cn.

Example 1.

ClSpin(E) := PSpin(E)×Spin Cn

This bundle admits a free action of Cn on the right.

Theorem 14. Let S(E) be a real spinor bundle of E. Then

S(E) is a bundle of modules over the the bundle of algebras

Cl(E).

3. Spin structures a la Stolz/Teichner

Definition 15 (New definition). Let V be a inner product

space of dimension n. A spin stucture on V is an irreducible

graded C(V )−Cn-bimodule equipped with a compatible inner

product.

Definition 16 (New definition). Let E → X be a real rie-

mannian vector bundle of dimension n and let Cl(E) → X be

the Clifford algebra bundle. A spin structure of E is a bundle

S(E) → X of graded irreducible Cl(E)− Cn-bimodels.

Remark 17. Let Spin(E) → X be a principal Spinn-bundle

like in section 2. The spinor bundle

ClSpin(E) = Spin(E)×Spinn
Cn,

is then a C(E)− Cn-bimodule, i.e. a spin structure.
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Definition 18. The opposite spin structure of a spin struc-

ture S(E) is S(E).

By Theorem 6 a spin sturucture S(E) determines an orien-

tation of E. The opposite orientation is induced by S(E).

Definition 19. A spin manifold X is a manifold X together

with a spin structure on its cotangent bundle T ∗X .

Examples 3. Let X be Rn. By identyfying T ∗X with Rn×Rn

the bundle

S := Rn × Cn → Rn

becomes an irreduzible graded Cl(T ∗X)−Cn-bimodule bund-

le.

Restricting S on submanifolds of codimension 0 we obtain

further spin structures, for example the spin structures on

Dn ⊂ Rn or It := [0, t] ⊂ R.

This spin structure S makes sense for n = 0: R0 is just one

point pt. Since C0 = R, S = R is a graded R − R-bimodule

(even line). The opposite spin structure of pt is pt is then an

odd line.
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