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1 The connection form and the covariant derivative

We begin by briefly recalling some facts from the theory of connections.

Definition 1.1. Let (E, π,M) be a vector bundle, let M be a manifold. A covariant

derivative is a linear map

▽ : Γ(E)→ Γ(T ∗M ⊗ E),

which satisfies the Leibniz rule:

▽(fΨ) = df ⊗Ψ + f▽Ψ

∀ ∈ C∞(M) and for all Ψ ∈ Γ(E).

Remark 1.2. If we take a vector field X ∈ Γ(TM) and evaluate ▽XΨ at x ∈ M then
(▽XΨ)(x) only depends on the vector Xx and the values of Ψ in an arbitrary small neig-
bourhood of x.

Definition 1.3. Let (P, π,M) be a G-principal bundle (G Lie group). For any point p ∈ P
there exists a canonical injection:

: G → TpP

z 7−→ z̄ =
d

dt
|t=0(p exp(tz))

where G is the Lie algebra of G. Its image is called the vertical space Vp and is the tangent
space to the fiber π−1(p)(i.eVp = Ker(π∗)).

Definition 1.4. Let (P, π,M) be a G-principal bundle. A connection on P is a G-invarian
field of tangent n-planes (i.e Hpg = (Rg)∗(Hp), where Rg : P → P , p 7−→ pg), such that:

TpP = Hp ⊕ Vp (Hp horizontal subspace=complement of Vp on TpP

The projection π induces an isomorphism

π∗|Hp
: Hp → Tπ(p)M.

Remark 1.5. G-invariant states that Hp and Hpg on the same fiber are related by Rg∗.

2 The connection one-form

In practical computations, we need to separate TpP into Vp and Hp in a systematic way.
This can be achieved by introducing a Lie-algebra valued one form ω ∈ G⊗T ∗P called the
connection form.
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Definition 2.1. A connection one-form ω ∈ G⊗T ∗P is a projection of TpP onto the vertical
component Vp. The projection property is summarised by the following requirements:

1. ωp(z̄) = z, z̄ as before

2. R∗
gω = Ad(g−1ω, i.e

for allX ∈ Γ(TP ) ω(Rg)∗X = Ad(g−1)ω(X)

Ad : G→ End(G), g 7−→ dαg, and αg : G→ G, a 7−→ gag−1.

Define the horizontal subspace Hp := Kerωp, then it defines a connection.

For a connection one-form ω on a G-principal fibre bundle (P, π,M), we define a covariant
derivative on every associated vector bundle E = P ×ρ Σ as follows:

Take a section Ψ ∈ Γ(E), which is locally given by Ψ = [s, σ], where s ∈ ΓU(P ) is a local
section on U ⊂M and σ : U → Σ is a function. Since

TU
s∗ // TP

ω // G
ρ∗

// End(Σ)

we can define a covarian derivative on E by:

▽XΨ := [s,Xσ + ρ∗((ω ◦ s∗)(X))σ]

for any X ∈ TU , where Xσ denotes the Lie derivative of σ in the direction of X.

3 The spinorial Levi-Civita connection

Notation

1. M denotes an n-dimensional Riemannian manifold with metric g.

2. SOM = SOn-principal fibre bundle=natural fibre bundle of an oriented Riemannian
manifold.

3. (SpinM, η)=spin structure on M .

4. ΣM = SpinM×ρ Σn = Complex spinor bundle associated to a spin structure SpinM
of M.
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Take a simply connected open subset U ⊂ M . Then any local section s ∈ ΓU(SOM) lifts
to a section s̄ ∈ ΓU(SpinM), i.e,

SpinM

��
U ⊂M //

s̄
88rrrrrrrrrr

SOM

and we can define a connection one-form ω̄ on SpinM as the unique connection one-form
for which the following diagram commutes:

TSpinM
ω̄ //

η∗

��

spinn

Ad∗

��
TU ⊂ TM

s̄∗
77ooooooooooo

s∗
// TSOM ω

// son

where spinn denotes the Lie algebra of Spinn and som denotes the Lie algebra of SOn,
which is the space of real skew-symmetric matrices. Hence a one-form can be considered
as an n× n matrix of one-forms ω = ((ωij)), ωij = −ωji.

To get a local description of the associated covarian derivative ▽ on ΣM , take an orthonor-
mal frame s = (e1, . . . , en) ∈ ΓU(SOM) U ⊂M , and denote by:

ω := s∗ω = −
∑

i<j

ωijei ∧ ej ,

where ei ∧ ej := g(ei, .)ej − g(ej, .)ei is a basis of son. We then get

ωij(X) = −g(ω(X)ei, ej) = −g(▽Xei, ej)

for all X ∈ Γ(TM).

4 Dirac Operator

In the following we wil often use a local orthonormal frame denoted by s = (e1, . . . , en) ∈
Γu(SOM), U ⊂M , which yields the relation

ei.ej + ej .ei = −2δij 1 ≤ i, j ≤ n

In talk number 4, we have seen that associated to a spin structure of a Riemannian manifold
(Mn, g), there are three essential structures:

1. The spinor bundle ΣM = SpinM ⊗ρ Σn, with the Clifford multiplication
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m : TM ⊗ ΣM // ΣM

X ⊗Ψ
� // X.Ψ := ρ(X)Ψ,

where ρ is the spinor representation. This multiplication extends to

m :
∧p(TM)⊗ ΣM // ΣM

α ⊗ Ψ
� //

∑

1≤i1<···<ip≤n αi1...ipei1 . . . eip.Ψ

where locally

α =
∑

1≤i1<···<ip≤n

e∗i1 ∧ · · · ∧ e
∗
ip

and e∗i = g(ei, .) is the dual basis of ei.

2. The natural Hermitian product (., .) on sections of ΣM .

3. The Levi-Civita connection on ΣM.

Moreover, these structures satisfy the following compatibility conditions:

1. (X.Ψ, φ) + (Ψ, X.φ) = 0

2. X(Ψ, φ)− (▽XΨ, φ)− (Ψ,▽Xφ) = 0

3. ▽X(Y.Ψ)− ▽XY.Ψ− Y.▽XΨ = 0

for all X, Y ∈ Γ(TM), Ψ, φ ∈ Γ(ΣM).

Definition 4.1. The Dirac operator is the composition of tha covariant derivative acting
on sections of ΣM with the Clifford multiplication

D := m ◦ ▽.

Locally, we get:

D : Γ(ΣM)
▽// Γ(T ∗(M ⊗ ΣM)

m // Γ(ΣM)

Ψ
� //

∑n

i=1 e
∗
i ⊗▽ei

Ψ � //
∑n

i=1 ei.▽ei
Ψ
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Lemma 4.2. The commutator of the Dirac operator with the action, by pointwise multi-
plication on the spinor bundle, of a function f : M → C, is given by:

[D, f ]Ψ := df.Ψ, Ψ ∈ Γ(ΣM)

Proof A locally calculation shows that:

[D, f ]Ψ = (Df − fD)Ψ =
∑n

i=1 ei.▽ei
(fΨ)− fDΨ

=
∑n

i=1 df(ei)ei.Ψ + fDΨ− fDΨ
= df.Ψ

Lemma 4.3. The Dirac operator is a first order partial differential operator which is

1. elliptic (i.e for all ξ ∈ T ∗M − {0}, σξ(D) : ΣxM → ΣxM, σξ(D)(Ψ(x)) := ξ.Ψ(x)
(Clifford multiplication by ξ.) is an isomorphism. (σ(D) is called principal symbol.

2. and formally self-adjoint with respect to

(., .)L2 :=

∫

M

(., .)νg,

if M is compact, and where νg denotes the volumen element.

sketch of the proof:

1. σξ(D) : ΣxM → ΣxM is an isomorphism ξ.Ψ = 0 −→ ξ.ξ.Ψ = 0 ←→ −||ξ||2Ψ =
0←→ Ψ = 0

2. To show D is self-adjoint choose normal coordinates at x ∈ M i.e (▽ei
ej)(x) = 0

1 ≤ i, j,≤ n, and compute (DΨ, ϕ).Now, use the following :

X(Ψ, ϕ)− (▽XΨ, ϕ)− (Ψ,▽Xϕ) = 0

to show that:

(DΨ, ϕ) = |x −
n

∑

i=1

ei(Ψ, ei.ϕ) + (Ψ, Dϕ)

Finally prove that: (Dψ,ϕ) = −divX1 − idivX2 + (Ψ, Dϕ), this last equation does
not depend on the choice of coordinates, so

∫

m

(DΨ, ϕ)νg =

∫

M

(ϕ,DΨ)νg,

since ∂M = ∅.

Lemma 4.4. For n = 2m
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1.
D : Γ(Σ±M)→ Γ(Σ∓M),

i.e the Dirac operator sends positive spinors into negative spinors.

2. The eigenvalues of D are symmetric with respect to the origin.

Examples: Dirac Operator

1. Let M = Rn, ΣRn = Rn × CN , with N = 2[ n
2
]. This implies that every spinor

Ψ ∈ Γ(ΣRn) is a function Ψ : Rn → CN . The, the Dirac operator is given by:

D =

n
∑

i=1

ei.∂i

which acts on differential maps from Rn to Cn, where ∂i = ▽ei
.

2. Let n = 2, and M = R2. Let Cl2 be the complexification of the Clifford real algebra
Cln, which is isomorphic to the group of 2×2 matrices. Then Σ2 = Σ+

2 ⊗Σ−
2 = C⊕C,

where Σ+
2 = spanC(e1 + ie2) and Σ−

2 = spanC(1− e1.e2). Then Ψ ∈ Γ(ΣM) is given
by complex functions

Ψ = f(e1 + ie2) + g(1− ie1.e2)

The Dirac operator is given by:

DΨ = (e1.∂1 + e2.∂2)[(e1 + ie2)f + (1− ie1.e2)g]
= −(∂1 + i∂2)f(1− ie1.e2) + (∂1 − i∂2)g(e1 + ie2)
= 2(−∂z̄f(1− e1.e2) + ∂zg(e1 + ie2)),

where ∂z̄ = 1
2
(∂1 + i∂2) and ∂z = 1

2
(∂1 − i∂2). That is







0 2∂z

−2∂z̄ 0







in the basis {(e1 + ie2), (1 − ie1.e2)} of Σ2. Hence the Dirac operator D can be
considered as a generalization of the Cauchy Riemann operator.
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5 Spin structures on conformal manifolds

Let Σ be a d-dimensional manifold, let k ∈ R. Let Lk → Σ be an oriented real line bundle
which fiber over x ∈ Σ consists of all maps ρ :

∧d(TxΣ)→ R, such that, ρ(λω) = (|λ|
k
d ρ(ω))

for all λ ∈ R. Sections of Ld are refered to as densities (weights). They can be integrated
over Σ resulting in a real number.

From now, Σ is assumed to be equipped with a conformal strcuture (i.e an equivalence
class of Riemannian metrics, where we identify a metric obtained by multiplication by a
function with the original metric).

Remark 5.1. For any k 6= 0 the choice of a metric in the conformal class corresponds
to the choice of a positive section Lk. Moreover, the conformal structure on Σ induces a
canonical Riemannian metric on the weightless cotangent bundle T ∗

0 Σ := L−1 ⊗ T ∗Σ.

The metric on T ∗
0 Σ is defined as follows: Let σ ∈ Γ(Σ, T ∗Σ) and let ρ ∈ Γ(Σ, L−1). Then

σ ⊗ ρ ∈ Γ(T ∗
0 Σ), hence we define a metric on T ∗

0 Σ as:

||σ ⊗ ρ||[g] := ρ(V olg).||σ||g.

It is well defined for a conformal class, because:

If g′ = fg then

ρ(V olg′).||σ||g′ = 1

(||f ||)
1
2

ρ(V olg).(||f ||)
1

2 ||σ||g

= ρ(V olg).||σ||g

Definition 5.2. A spin structure on a conformal d-manifold Σ is by definition a spin
structure on the Riemannian vector bundle T ∗

0 Σ.

Let Σd be a conformal spin manifold. Picking a Riemannian metric in the conformal class
determines the Levi-Civita connection on the tangent bundle of Σ, which in turn determines
connections on the spinor bundle S = S(T ∗

0 Σ), the line bundles Lk and hence Lk ⊗ S for
all k ∈ R.

Definition 5.3. The Dirac operator on weighted spinor bundleD = DΣ is the composition:

D : C∞(Σ;Lk ⊗ S)
▽ // C∞(Σ;T ∗Σ⊗ Lk ⊗ S) = C∞(Σ;Lk+1 ⊗ T ∗

0 Σ⊗ S)

c // C∞(Σ;Lk+1 ⊗ S)

where c is the Clifford multiplication (given by the left action of T ∗
0 Σ ⊂ c(T ∗

0 Σ) on S.) ▽

is the connection on Lk ⊗ S.
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Remark 5.4. For k = d−1
2

, the Dirac operator is independent of the choice of the Rie-
mannian metric. See [1]

Let Σd be a conformal spin manifold with boundary Y . Assume that the bundle ξ extends
to a vector bundle with metric an connection on Σ. We denote it again by ξ and let ∂ξ its
restriction to Y . Let S be the spinor bundle of Σ an recall that the restiction of S+ to Y
is the spinor bundle of Y .

Definition 5.5. The twisted Dirac operator is the composition:

Dξ : C∞(Σ;L
d−1

2 ⊗ S ⊗ ξ)
▽ // C∞(Σ;T ∗Σ⊗ L

d−1

2 ⊗ S ⊗ ξ)

= C∞(Σ;L
d+1

2 ⊗ T ∗
0 Σ⊗ S ⊗ ξ)

c // C∞(Σ;L
d+1

2 ⊗ S ⊗ ξ)

where ▽ is the connection on L
d−1

2 ⊗ S ⊗ ξ determined by the connection on ξ and the
Levi-Civita connection on L

d−1

2 ⊗S for the choice of a metric given in the conformal class.

6 Index of Dirac operator

Fact: Over a compact manifold, the kernel and cokernel of an elliptic operator P are of
finite dimension.

Definition 6.1. The index of P is definided as:

indP := dim(kerP )− dim(cokerP )

Example: Let X be a compact Riemannian manifold of dimension 4m. Consider the
complex spinor bundle 6 SC, with Dirac operator 6 D. We split 6 SC

∼= 6 S+
C
⊕ 6 S−

C
, where

6 S±
C

= (1 ± ωC) 6 SC, with ωC the complex volume elelement, given in terms of a positive
oriented tangent frame (e1, . . . , e2m).

ωC = ime1 . . . e2m

This is a globally defined section of

Cl(C) = Cl(X)⊗ C,

with properties:
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1. ▽ωC
= 0

2. ω2
C

= 1

3. ωCe = −eωC, for any e ∈ TX.

Theorem 6.2. Let X be a compact spin manifold of dimension 2m. Consider

6 D+ : Γ(S+
C
(X))→ Γ( 6 S−

C
(C))

Then
ind 6 D+ = Â(X).

More general: If E is any complex vector bundle over X, then index of

6 D+
E : Γ( 6 S+

C
(X)⊗ E)→ Γ( 6 S−

C
(X)⊗E)

is
ind( 6 D−

E) = (chE.Â)[X]

Theorem 6.3. Let X be a compact oriented manifold of dimension 2m. Consider

D+ : Γ(Cl+(X))→ Γ(Cl−(X))

Then
indD+ = L(X) = sig(X)

In general, if E is any complex vector bundle over X, then

D+
E : Γ(Cl+(X)⊗ E)→ Γ(Cl−(X)⊗E)

is given by:
ind(D+

E) = (ch2E.L(X))[X]

where ch2E =
∑

k 2kchkE, and chkE = 1
k!

∑n

i=1 x
n
i .
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