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1 The connection form and the covariant derivative

We begin by briefly recalling some facts from the theory of connections.

Definition 1.1. Let (E,w, M) be a vector bundle, let M be a manifold. A covariant
derivative is a linear map

v:T'(E) - T(T"M ® E),
which satisfies the Leibniz rule:

V(fU)=df @ U + fVv¥
V € C®(M) and for all ¥ € T'(E).

Remark 1.2. If we take a vector field X € I'(T'M) and evaluate VxW¥ at x € M then
(VxVU)(x) only depends on the vector X, and the values of ¥ in an arbitrary small neig-
bourhood of z.

Definition 1.3. Let (P, 7, M) be a G-principal bundle (G Lie group). For any point p € P
there exists a canonical injection:

G —T,P
| — = —|i_
z z dt t=0 p exp z

where G is the Lie algebra of G. Its image is called the vertical space V,, and is the tangent
space to the fiber 71(p)(i.eV, = Ker(m.)).

Definition 1.4. Let (P, 7, M) be a G-principal bundle. A connection on P is a G-invarian
field of tangent n-planes (i.e Hy, = (Ry).(H,), where R, : P — P, p — pg), such that:

T,P = H, ®V, (H, horizontal subspace=complement of V,, on T,,P
The projection 7 induces an isomorphism
W*‘Hp : Hp — Tw(p)M.

Remark 1.5. G-invariant states that H, and H,, on the same fiber are related by R..

2 The connection one-form

In practical computations, we need to separate 7, into V,, and H, in a systematic way.
This can be achieved by introducing a Lie-algebra valued one form w € G ® T* P called the
connection form.



Definition 2.1. A connection one-form w € GRT™P is a projection of T, P onto the vertical
component V,. The projection property is summarised by the following requirements:

1. wy(Z) =2z, Z as before

2. Riw=Ad(g7'w, i.e

for allX € T'(TP) w(R,).X = Ad(g")w(X)
Ad: G — End(G), gr— day, and a,: G — G, a— gag™'.
Define the horizontal subspace H, := Kerw,, then it defines a connection.

For a connection one-form w on a G-principal fibre bundle (P, 7, M), we define a covariant
derivative on every associated vector bundle £/ = P x, X as follows:

Take a section ¥ € T'(E), which is locally given by ¥ = [s, 0], where s € T';(P) is a local
section on U C M and o : U — ¥ is a function. Since

TU 2> TP -4~ G—% Fnd(Y)

we can define a covarian derivative on E by:

VxV = [s, X, + pu((wo s:)(X))o]

for any X € TU, where X, denotes the Lie derivative of o in the direction of X.

3 The spinorial Levi-Civita connection

Notation
1. M denotes an n-dimensional Riemannian manifold with metric g.

2. SOM = SO,-principal fibre bundle=natural fibre bundle of an oriented Riemannian
manifold.

3. (SpinM,n)=spin structure on M.

4. XM = SpinM x 3, = Complex spinor bundle associated to a spin structure SpinM
of M.



Take a simply connected open subset U C M. Then any local section s € T'y;(SOM) lifts
to a section § € I'y(SpinM), i.e,

SpinM

UCM—SOM

and we can define a connection one-form w on SpinM as the unique connection one-form
for which the following diagram commutes:

T SpinM -“— spin,,

S
ln* lAd*

TU C TMT)TSOMW—>5011

where spin, denotes the Lie algebra of Spin, and so,, denotes the Lie algebra of SO,,
which is the space of real skew-symmetric matrices. Hence a one-form can be considered
as an n X n matrix of one-forms w = ((w;;)), wi; = —wj;.

To get a local description of the associated covarian derivative V on XM, take an orthonor-
mal frame s = (eq,...,e,) € 'y(SOM) U C M, and denote by:

wi=s'w=— E wije; N e;,
i<j

where e; Ae; := g(e;,.)e; — g(ej, .)e; is a basis of s0,,. We then get
wij(X) = —g(w(X)ei, ¢;) = —g(Vxei, )

for all X € I'(T'M).

4 Dirac Operator

In the following we wil often use a local orthonormal frame denoted by s = (ey,...,¢e,) €

[',(SOM), U C M, which yields the relation
€i.€; + €;j.€; = —25” 1 S Z,] S n

In talk number 4, we have seen that associated to a spin structure of a Riemannian manifold
(M™, g), there are three essential structures:

1. The spinor bundle XM = SpinM ®, X,,, with the Clifford multiplication



m: TM QXM XM

X @U—s XU = p(X)V,

where p is the spinor representation. This multiplication extends to

m: A(TM) @ SM SM

o ® v [ Zl§i1<~~~<z‘p§n Oy iy €y - - - €3, Y

where locally

_— * DR *
a = E €y, N Ney

1<i1<-<ip<n

and e’ = g(e;, .) is the dual basis of ;.
2. The natural Hermitian product (.,.) on sections of X M.
3. The Levi-Civita connection on X M.
Moreover, these structures satisfy the following compatibility conditions:
L (X0, 9)+ (¥, X.¢) =0
2. X(U,0) — (VxVU,0) — (V,Vxs) =0
3. Vx(YU) —VxY U —YVx¥ =0
forall X, Y e T'(TM), U, ¢ € I'(XM).

Definition 4.1. The Dirac operator is the composition of tha covariant derivative acting
on sections of XM with the Clifford multiplication

D:=moV.

Locally, we get:

D: N(EM) —T(T*(M @ *M) = [(XM)

Yr——> " eV, Ur—>"" €.V,

i=1 "1



Lemma 4.2. The commutator of the Dirac operator with the action, by pointwise multi-
plication on the spinor bundle, of a function f : M — C, is given by:

D, fl¥ :=df. ¥, Vel(XM)
Proof A locally calculation shows that:
(D, fI¥ = (Df = fD)W =37, €.Ve,(f) = fDV

S df(e)e; W + fDU — fDW
= df.VU

Lemma 4.3. The Dirac operator is a first order partial differential operator which is

1. elliptic (i.e for all § € T*M — {0}, 0¢(D) : B, M — X, M, 0¢(D)(¥(x)) := £.¥(x)
(Clifford multiplication by £.) is an isomorphism. (o(D) is called principal symbol.

2. and formally self-adjoint with respect to

(= [ o

if M is compact, and where v, denotes the volumen element.
sketch of the proof:

1. 0¢(D) : ¥, M — ¥, M is an isomorphism .U = 0 — LU = 0 «— —|[¢]]2V =
00— ¥ =0

2. To show D is self-adjoint choose normal coordinates at = € M ie (V.e;)(x) =0
1 <i,7,<n, and compute (DV¥, ¢).Now, use the following :

X(\If,(p) - (VX\II’QP) - (\Ija VXQP) =0
to show that:

n

(DU, ) =, = > eV, e1.0) + (¥, D)

i=1

Finally prove that: (Dv,¢) = —divX; — idivXs + (¥, D), this last equation does
not depend on the choice of coordinates, so

/(D\I/,so)vg:/M(% DU)y,,
since OM = .

Lemma 4.4. For n = 2m



D:T(Z*M) — T(SF M),
i.e the Dirac operator sends positive spinors into negative spinors.

2. The eigenvalues of D are symmetric with respect to the origin.
Examples: Dirac Operator

1. Let M = R", ¥R® = R" x CV, with N = 2[2]. This implies that every spinor
U € T'(XR") is a function ¥ : R — CV. The, the Dirac operator is given by:

i=1

which acts on differential maps from R” to C", where 0; = V..

2. Let n =2, and M = R% Let Cl, be the complexification of the Clifford real algebra
Cl,,, which is isomorphic to the group of 2 x 2 matrices. Then ¥y = ¥J ®@%; = CHC,
where X5 = spanc(e; +ies) and X5 = spanc(1 — ej.e3). Then ¥ € T'(XM) is given
by complex functions

U = f(ey +iey) + g(1 —ieq.es)

The Dirac operator is given by:

DV = (61.61 + 62.82)[(61 -+ ieg)f -+ (]_ - iel.eQ)g]
—(61 + ’Lag)f(]_ — iel.eg) + (61 — 2'82)9(61 + iez)
= 2(—8gf(1 — 61.62) + @g(el + i€2)),

where 0; = $(01 + i0,) and 9, = (O — id>). That is
0 20.
—20= 0

in the basis {(e; + iez), (1 — iej.e2)} of Xy, Hence the Dirac operator D can be
considered as a generalization of the Cauchy Riemann operator.



5 Spin structures on conformal manifolds

Let ¥ be a d-dimensional manifold, let £ € R. Let L* — ¥ be an oriented real line bundle
which fiber over z € ¥ consists of all maps p : A*(T,3) — R, such that, p(Aw) = (|A|4p(w))
for all A € R. Sections of L? are refered to as densities (weights). They can be integrated
over Y resulting in a real number.

From now, ¥ is assumed to be equipped with a conformal strcuture (i.e an equivalence
class of Riemannian metrics, where we identify a metric obtained by multiplication by a
function with the original metric).

Remark 5.1. For any k£ # 0 the choice of a metric in the conformal class corresponds
to the choice of a positive section L¥. Moreover, the conformal structure on ¥ induces a
canonical Riemannian metric on the weightless cotangent bundle T{Y. := L™ @ T*X.

The metric on TyY is defined as follows: Let o € T'(3, T*Y) and let p € T'(X, L), Then
o®pe'(I§Y), hence we define a metric on 7Y as:

l|o ® PH[g} = p(Voly).||o|]y-

It is well defined for a conformal class, because:

If ¢ = fg then
1
p(Voly) |lolly = WP(VOZQ)-(HJ“HPHUH;;
= p(Volg).llollg

Definition 5.2. A spin structure on a conformal d-manifold X is by definition a spin
structure on the Riemannian vector bundle 775X.

Let X be a conformal spin manifold. Picking a Riemannian metric in the conformal class
determines the Levi-Civita connection on the tangent bundle of ¥, which in turn determines
connections on the spinor bundle S = S(73Y), the line bundles L* and hence L* ® S for
all k£ € R.

Definition 5.3. The Dirac operator on weighted spinor bundle D = Ds; is the composition:

D:C=(S; LF @ S) Vs 0TS QLF®S) =C®(S M o TS ® S)

¢ COO(Z;LIH'l ® S)

where c is the Clifford multiplication (given by the left action of 7Y C ¢(T§X) on S.) ¥
is the connection on L* @ S.



Remark 5.4. For k = %, the Dirac operator is independent of the choice of the Rie-
mannian metric. See [1]

Let X7 be a conformal spin manifold with boundary Y. Assume that the bundle ¢ extends
to a vector bundle with metric an connection on 3. We denote it again by & and let 9¢ its
restriction to Y. Let S be the spinor bundle of ¥ an recall that the restiction of ST to Y
is the spinor bundle of Y.

Definition 5.5. The twisted Dirac operator is the composition:

\

Dy : CO( LT @5®¢)

C(T TS QLT ©S®¢)

d+1

=C®E; L7 QT{E®S®E)

C d+1

C®(;L2 8S®E)

where V is the connection on L2 ® S ® & determined by the connection on ¢ and the
. .. . d—1 . . . .
Levi-Civita connection on L 2 ® S for the choice of a metric given in the conformal class.

6 Index of Dirac operator

Fact: Over a compact manifold, the kernel and cokernel of an elliptic operator P are of
finite dimension.

Definition 6.1. The indez of P is definided as:

indP := dim(kerP) — dim(cokerP)

Example: Let X be a compact Riemannian manifold of dimension 4m. Consider the
complex spinor bundle /S¢, with Dirac operator /D. We split Sc = /S{@ Sg, where
/Sé = (1 £wc) Sc, with we the complex volume elelement, given in terms of a positive
oriented tangent frame (eq, ..., ean).

we =1"ey...ea,
This is a globally defined section of
Cl(C) =Cl(X)®C,

with properties:



3. wee = —ewg, for any e € TX.
Theorem 6.2. Let X be a compact spin manifold of dimension 2m. Consider
DT T(Sg(X)) = T(Be(C))

Then R
ind DT = A(X).

More general: If F is any complex vector bundle over X, then index of

Pp:T(BEX)® E) = T(Bc(X) @ E)

is A

ind(Dg) = (chE.A)[X]
Theorem 6.3. Let X be a compact oriented manifold of dimension 2m. Consider

DY :T(CI* (X)) — T(ClI” (X))

Then

indDT = L(X) = sig(X)
In general, if E is any complex vector bundle over X, then

D} :T(CI*(X)® E) — I(ClI"(X) ® E)

is given by:
ind(D}) = (cho E.L(X))[X]

where choE = 3", 2Fch*E, and ch*E = 5377 | a7
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