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This semester we want to study the basic theory of C∗-algebras and their topological
K-theory. C∗-algebras are the main objects of study in what is called non-commutative
topology. A C∗-algebra is a (complex) Banach algebra A with an involution x 7→ x∗ such
that the so called C∗-identity

‖x∗x‖ = ‖x‖2

is true for all x ∈ A. This harmless looking identity actually has a tremendous effect on
the interaction of the topology and the algebraic structure of A, for example the norm
on a C∗-algebra A is uniquely determined by its algebraic structure.

The study of K-theory of such algebras contains the usual topological K-theory of (lo-
cally) compact spaces as a special case (this is the commutative part) but extends to
other non-commutative algebras. It is interesting to note that while the topological
K-theory of a space X does not tell us too much about the homotopy type of X, the
situation for non-commutative algebras is quite different: here, the K-theory often turns
out to be a powerful invariant. Classical examples of non-commutative algebras that
arise in topology are group algebras as e.g. in the statement of the Baum-Connes Con-
jecture.

The seminar will roughly be devided into three parts.

In the first part we will talk about general C∗-theory. The goal of this part is to prove
the basic theorems about classification and representation theory in order to get a better
feeling for the theory. Precisely we will show that every commutative C∗-algebra is of
the form C0(X) for some locally compact space X and that every C∗-algebra admits a
faithful representation on some Hilbert space. Hence we will see that every C∗-algebra
is a norm closed ∗-subalgebra of the algebra of bounded operators on some Hilbert space
H, denoted B(H). Using this we will be able to define new examples of C∗-algebras,
as e.g. the (reduced) Toeplitz algebra, which we will use in the proof of complex Bott-
periodicity.

The second part will be devoted to the topological K-theory of C∗-algebras. We will
introduce the functors K0 and K1 by hand, define suspensions and hence higher K-
theories. We will show that K-theory is stable, half-exact, and homotopy invariant.
Having introduced the topological K-groups we will continue by proving one of the
characteristic properties of topological K-theory, namely Bott-periodicty. The proof we
will present is essentially due to J. Cuntz. A variant of it could actually be deduced for
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any half-exact, stable, homotopy invariant functor E : C∗Alg→ Ab. If time permits we
will sketch this more general form of Bott-periodicity.

The third part of the seminar (the last four talks) will be devoted to the study of
algebraic K-theory of socalled stable C∗-algebras. Those are algebras A where a certain
map A → A ⊗ K is an isomorphism of C∗-algebras (K denotes the algebra of compact
operators). The goal of this last part is to give a sketch of the proof of the Karoubi
Conjecture, which is due to combined results of Higson and Suslin-Wodzicki:

Conjecture 1. For stable C∗-algebras A the natural comparison map

Kalg
∗ (A)

c // Ktop
∗ (A)

is an isomorphism.

We will only be concerned with the case ∗ ≥ 0 and hence need not worry about non-
connective algebraic K-theory. The case ∗ < 0 was proven earlier by Karoubi and uses
methods very different from what we are going to see. As one can think, the proof
is quite complicated (as it implies that algebraic K-theory is periodic) and involves
methods from both algebraic and topological K-theory. The goal is that we will at least
see and understand the essential arguments why this conjecture is true. Luckily the
input from topological and algebraic K-theory are mostly independent of each other,
so that people more interested in homotopy theory might prefer to give one of these
talks. The main input from algebraic K-theory will be dealt with in talks 9,10 and 11.
The input from topological K-theory is a result of Higson, and is the content of the last
talk.

If you want to give a talk, please send me an email (land@math.uni-bonn.de) indicating
a choice of 2-3 talks of which you would be willing to give at least one. Please do not
hesitate to ask questions via email or also in person concerning your talk or related
issues. I will be pleased to help and discuss problems with you. Please also contact me
if you feel that you will not be able to provide all theorems that are listed for your talk,
so we can see what can be left out without causing too much of harm for the future
talks.

Concerning the first four talks, it would be good if you followed my notes as a guideline
and use [10] only as additional source. It would definitely be good, if you choose one of
the first four talks, for us to meet so that I can give you copies of [6].

TALKS

Talk 1. C∗-algebras I [18.04.−Markus Land]
Define Banach and C∗-algebras. Introduce the unitialization of a non-unital algebra via
its left-regular representation. Mention the van Neumann series and deduce openness
of invertible elements in a unital Banach algebra. Define the spectrum of an element,
show it is non-empty and compact [10, Prop. 2.3 and Thm 2.5]. Define the spectral
radius and relate it to the norm. Hence show that in a C∗-algebra the norm is uniquely
determined by the algebraic structure. As a corollary, prove that Banach algebras that
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are division rings are canonically isomorphic to C. Introduce ideals and quotients of
Banach-algebras. State the holomorphic functional calculus [10, Prop. 2.7 and Prop.
2.8]. General references are [10, Chapter 1 and Chapter 2] and also [5, Chapter 6 and
7] for general functional analysis. [10] usually proves things more generally than we
need (for (involutive) Banach algebras) but you should state everything in the world of
C∗-algebras. Some proofs become simpler then. The notes [6] are more streamlined and
might fit your needs better.

Talk 2. Commutative C∗-algebras [18.04.− Christian Wimmer]
The goal of this talk is to prove the Gelfand-Naimark Theorem which states that every
commutative C∗-algebra is of the form C0(X) for some locally compact Hausdorff space
X. Start by introducing the Gelfand-transform [10, Thm 3.11 and Def. 3.12], i.e. intro-
duce the maximal ideal space of Banach algebras (you will need [10, Prop 3.8 and Prop
3.10]. Recall Banach-Alaoglu. If you want, you can prove a result in Fourier-analysis
(Theorem of Wiener) as an application, see [6], but you don’t have to. Introduce normal,
unitary, self-adjoint, idempotent elements. Conclude properties about the spectrum of
such elements. Proceed to prove that for C∗-algebras the Gelfand-transform is an isomet-
ric isomorphism [10, Thm 4.4]. Finally, prove the spectral theorem for normal elements
in arbitrary unital C∗-algebras [10, Prop. 4.6]. Again the standard references include [5,
Chapter 8] and [10]. As for the first talk, my notes [6] are a bit more streamlined than
[10], so this might also be interesting for you.

Talk 3. C∗-algebras II [02.05− Ruth Joachimi]
Show that the spectrum of an element is independent of the ambient algebra [10, Prop.
4.8]. In particular show that elements in non-unital algebras have a well-defined spec-
trum. Introduce ∗-homomorphisms. Prove that any such homomorphism is continuous
(in fact norm-decreasing) [10, Prop. 5.2]. Show that injective homomorphisms between
C∗-algebras are norm-increasing [10, Prop. 5.3]. Hence deduce that injective morphisms
are isometric. In particular show that every ∗-homomorphism has closed image (which
allows to form cokernels). As a preparation for the next talk, introduce positive elements
and the classification of them, precisely prove the following [10, Thm 6.1]: let x be a
self-adjoint element in a unital C∗-algebra. Then the following are equivalent: (i) x is
positive, (ii) x = y∗y, for some y ∈ A. The references [10] and my notes [6] should be
sufficient for this talk.

Talk 4. The GNS-construction [02.05− Benjamin Kuester]
The goal of this talk is to prove that every C∗-algebra may be faithfully represented
on some Hilbert space. This is proven by the Gelfand-Naimark-Segal construction. In
order to state it, introduce representations, positive linear functionals and states on C∗-
algebras [10, Chapter 9]. If you want you can motivate why positive linear functionals
classically give rise to representations (if X is a compact space, then a Radon measure
µ on X is a positive linear functional on C(X). But Radon measures always give rise to
representations of C(X) by multiplication operators on L2(X;µ)). You should now be
able to state the GNS-construction about cyclic representations [10, Thm 9.14]. Proceed
to prove that any C∗-algebra admits a faithful representation on Hilbert space ([10, Thm
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9.18]). Hence show that we could have defined C∗-algebras to be norm-closed subalgebras
of bounded operators of a Hilbert space. Give examples of classical algebras that occur
in this fashion: the bounded operators, the compact operators, the Qualkin-algebra, the
(abstract) Toeplitz algebra T . Mention that we will need the Toeplitz algebra later on,
when we want to prove Bott periodicity. References other than [10] are again my notes
[6].

Talk 5. K0 and Projections [06.06.−Gisa Schaefer]
Introduce matrix algebras over C∗-algebras, use the representation theory to deduce that
they are again C∗-algebras. Introduce the different relations on projections: Murray van
Neumann equivalence, unitary equivalence and homotopy, show how they are related,
as e.g in [4, Def. 4.1.9 ff]. Define the group K0(A) for unital C∗-algebras and extend

this definition to non-unital C∗-algebras briefly. Remark that K0(A) ∼= Kalg
0 (A). In

particular recall the Theorem of Swan to relate to usual topological K-theory. Prove
stability of K0 as e.g in [4, Lemma 4.2.4]. Prove half-exactness [4, Prop. 4.3.15] (if time
permits, you can talk about relative K-theory and excision, but you don’t have to).
State and prove homotopy invariance [4, Prop 4.4.3]. In general a good reference for K0

is [4, Chapter 4], but you can also look at [11, Chapter 6] for K0 and [11, Chapter 5] for
the different relations on projections. [1, Chapter 4 and 5] is shorter but more technical.
You should try not to get lost in the technicalities concerning all these different relations.
Yet another reference for K-theory is [7].

Talk 6. Higher topological K-theory [06.06.−Antonio Sartori]
Introduce the functor A 7→ K1(A) via homotopy classes of unitaries in A (see [4, Section
4.8]). Define for n ≥ 2 the group Kn(A) = K0(Sn(A)). Show that K1 is homotopy in-
variant. Define the connecting homomorphism classically (for K1 in the unitary picture).
Hence deduce a longer exact sequence in topological K-theory starting at K1 and ending
with K0. Then show that K1(A) ∼= K0(SA) and deduce stability and half exactness of
K1. To relate to the higher K-groups define the mapping cone sequence associated to
a surjective ∗-homomorphism A→ A/J as in [4, 4.5.6] and define the boundary map in
this context. Hence we get a really long exact sequence involving all Kn. Explain the
example for the case of compact operators as ideal in all bounded operators and prove
the Toeplitz index theorem [11, Prop. 9.4.2].

Talk 7. Bott periodicity I [20.06−Alexander Koerschgen]
Introduce spatial tensor products of C∗-algebras ([4, Exercise 3.9.8]) and briefly mention
the concept of nuclearity as in [1, Thm 15.8.1 parts 1 and 2] or [4, Chapter 3.3]. Give
examples of nuclear algebras (without proof) such as finite dimensional and commutative
ones [1, Thm 15.8.2]. Explain the exactness properties of spatial tensor products using
the notion of nuclearity ([4, Exercise 3.9.12 and Thm 3.6.6]). Define the exterior products
on K-theory in low dimensions, i.e. construct the maps

K0(A)⊗K0(B)→ K0(A⊗B) and K1(A)⊗K0(B)→ K1(B)

explicitly as in [6]. Show that they are natural with respect to ∗-homomorphisms and
with respect to the boundary map in the long exact K-theory sequence. Define the Bott
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element β ∈ K1(SC) and the Bott map

βA : K0(A)→ K1(SA) ∼= K2(A)

induced by exterior product with the Bott element. Recall the Toeplitz algebra via the
unilateral shift and identify the quotient T /K with C(S1) via the spectral theorem for
normal operators. If time permits and it has not been done in talk 6 prove the Toeplitz
index theorem (else, only state it - you need this to do the computation T /K ∼= C(S1)).
Now you are ready to define the candidate for an inverse of the Bott map which we call
sA.

Talk 8. Bott periodicity II [20.06.− Irakli Patchkoria]
The goal of this talk is to finish the proof of Bott periodicity. For this you have to show
separately that the map sA is a left and a right inverse of βA. First show that it is a left
inverse. Do this firstly for the ”universal case” A = C. Then consider the diagram

K1(SC)×K0(A) //

sC×id
��

K1(SA)

sA
��

K0(C)×K0(A) // K0(A)

and show commutativity. It is a formal consequence that sA is also a left inverse of
βA. Showing that sA is also a right inverse of βA is more involved. You can follow [4,
Chapter 4.9] which is a bit sketchy, though. Details are available in [6] but since this
is my Bachelor’s thesis we should browse through this together to capture the essential
arguments. If time permits explain the direct proof thatK∗(T0⊗A) = 0 which also proves
a periodicity phenomenon, but does not relate directly to the Bott map βA.

Talk 9. Algebraic K-Theory [04.07−Markus Hausmann]
You should recall the definition of algebraic K-theory of (unital) rings via the plus

construction. Then show that for a C∗-algebra A the space Ktop
0 (A) × BGL(A) has

the right homotopy type for topological K-theory. Remark that this model allows us to
construct a map from the algebraic K-theory space to BGL(A) and hence define the

comparison map c : Kalg
∗ (A) → Ktop

∗ (A). Explain how to define algebraic K-theory of

non-unital rings, and introduce the excision property. State that Kalg
0 (A) ∼= Ktop

0 (A)

and identify the map Kalg
1 (A)→ Ktop

1 (A). Introduce relative algebraic K-theory as the
homotopy fiber of the comparison map. If time permits, explain some of the results on
lower K-theory as e.g. [8, Thm 12] or [8, Thm 13].

Talk 10. Excision in mod p algebraic K-theory [04.07.−Dominik Ostermayr]
Introduce algebraic K-theory with finite coefficients following [12]. The goal of this talk
is to show that Q-algebras (and hence C∗-algebras) satisfy excision in mod p K-theory
for any prime p, so you should keep your focus on the results in [12] you need for this.
Another reference is [9, Lemma 1.9], it is shorter, but seems to rely on the fact that
C∗-algebras satisfy property AHZ (this is suggested by [9, Lemma 1.8]). If this does
not fill 75 minutes, you should talk to the person giving the talk on excision in rational
algebraic K-theory and give as much of prerequisites for that talk as possible. So it
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would be good if the two speakers of the excision results talked to each other about
this.

Talk 11. Excision in rational algebraic K-theory [18.07.−Karol Szumilo]
This is probably a difficult talk. The main line of argument seems to be as follows. You
should mention (if time permits sketch) that C∗-algebras A are H-unital as in [13] or
[8, 3.3.2]. Use the functional calculus to show that A2 = A (this should be in [4]). Then
introduce the property AHΛ (we probably only need AHQ). You will want to use [9,
Corollary 1.8] in order to show that C∗-algebras satisfy excision in rational algebraic
K-theory. So proceed to show that C∗-algebras have property AHQ. For this the main

results are [9, Prop. 6.1 (b)] and [9, Thm 2.10]. Explain why only G̃L(A) is used in [9,

Chapter 2] and not also
˜̃
GL(A) as in the definition of property AHΛ.

Talk 12. Higson’s result and the conclusion [18.07.−Markus Land]
The first goal of this talk is to sketch Higson’s result (a rigidity result, if you will)
that certain kinds of functors from C∗-algebras to abelian groups are automatically
homotopy invariant in the C∗-algebraic sense [3, Chapter 3, Thm 3.2.2], [8, Thm 3.2].
This talk involves ideas fromKK-theory, so whoever chooses to do this talk, should either
have heard of Fredholm-modules and analytic K-homology or be willing to work in this
direction. Then you should put the pieces together and prove the Karoubi conjecture,
following either [8, Thm 3.3] or [9, Chapter 10, Thm 10.9].
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