Solutions for exercises, Algebra I (Commutative Algebra) — Week 12

Exercise 61. (Graded rings and modules, 3 points)

1. If the (a;);er generate A as a Ap-algebra, then they generate A, as ideal since any

a € Ay C A = Aol(ai)ier] is a polynomial in some (finitely many) a;,,...,a;, with
coefficient in Ay and with 0 constant term (as a € A4 is a sum of homogeneous elements
in graded pieces > 0).
Conversely if (a;);c; generate Ay as an ideal, then elements in Ay are certainly in
Ao[(ai)ier] (constant polynomials). If a € Ay C Ay = (ai)ier then a = Y ) aga;,
for some a;, € A; and necessarily o € Ao for grading reason. So a € Ap[(ai)ier]
i.e. Ay C Ao[(a;)ier]. So we can proceed by induction: let n > 1 be such that Ay C
Apl(ai)ier] for any k < n; then for any a € A,y1 C Ay = ((a4)ier), we can write
a =Y p_;apa; for some a; € Ay = ®;>1A; and necessarily ay € Go<j<n—14; for
grading reason. By induction hypothesis the ay’s are in Ag[(a;)icr]. So a € Ap[(a;)icr]
ie. Apt1 C Aol(as)ier]. Thus by induction A,, C Ap[(a;)ics] for any n and taking sums
A = Ao[(ai)ier]-

2. Let mq,...,my € M be a set of generators of M as A-module, with m; € Mjy,. Let
ai,...,am € Ay be a set of generators of A as Ap-algebra, with a; € A,,. By the first
question we have A = Ag[ay, ..., an]. Any element in M, a fortiori in M}, can be written
> v bymy, with by € A. For any 1 < i < n, bm; € M, if and only if b € A;_g4,. But
there are only finitely many monomials aj" - - - ajy of total degree > rjo; =k — d;. So
M, is generated over A by the a{*---afmm;, i=1,...,nand ) rja; =k — d;; which
then form a finite set of generators.

Exercise 62. (Homogeneous ideals, 2 points)

1. Let us denote a; = aN A; for any 7 > 0; by assumption a = @;a; and assume that a
is proper i.e. 1 ¢ aie. ag & Ag. The group @;>04;/a; is a Ag-algebra: 1 € Ag/ag is
its unit since for any a € A4;, la = (1 + ap)(a +a;) = a+ aay +a; = a. For any

~—
€anA;=a;

acA;, bedj (a+a;)(b+a;) =ab+ aa; + ba; so @- b is well-defined
~—~ ~—
GaﬂAi+j:ai+j EuﬂAi+j:ai+j

and in A;4;/a;4;. Associativity and distributivity follows from the rules of A. So ®A4;/q;
is a ring; the Ag-algebra structure is given by Ay — Ag/ay.
Let us define f : A — @i>0di/a;, by Y ;" qa; — Y . ,a where a; are homoge-
neous. We have f(1) = 1. It is a ring homomorphism: it is sufficient to check it
with homogeneous elements a € A;, b € Aj, ¢ € A; (a+ a;))(b+a; +c+a;) =
a(b + C) -+ ( aat; + aay ) + ai(b + C) + ai(aj + Clk) thus a(b + C) = ﬁ(b + E)

—_——— —— ———

€anA;qj+anA; i €anAipj+anNA; . €anNAipj+and; ik

i.e. f is a ring homomorphism. It is readily seen to be surjective.
If a =), a;, with a; € A; and A; # A; for any i # j, is in ker(f) then a; € a;, for any ¢
i.e. a € a. Conversely, if a € a, write a = ), a;, with a; € A; and A; # A; for any i # j;
as a is homogeneous, a; € a; for any ¢ so that f(a) = 0i.e. ker(f) = a. So A/a ~ @&;4;/a;.

Solutions to be handed in before Monday July 6, 4pm.



2. Let z € /a and write x = Z?Zl x; with x; € Ak:i homogeneous and k1 < --- < ky.
We want to show that z; € \/a, Vi. We have 2V € a for some N > 0; we can write
x = 2 +y where 2 € Ayy, is the term of highest degree and y € BNk, Ai. Since
a is homogeneous, =2 € ai.e. z, € Va. So z — x, = ZZ Lx; € V/a (as v/a is an ideal,
in particular a group). So by induction, z; € a, Vi.

Exercise 63. (Proj, 5 points)

1. If every element of A is nilpotent, then A4 C Npegpec(4)P; in particular for any homo-
geneous prime p, we have p D A, i.e. Proj(A) = 0.
Conversely if Proj(A) = @, then any homogeneous prime ideal contains A, . If A, #C N,
take a € A1 \9; then one of the homogeneous components of a, say a;,, is not in 91. We
have D (ai,) C Proj(A) = ) and since D (ai,) =~ Spec(A(y, ) we get Ay, ) = 0. So in
Afayy) C Agyyr 1 =0ice. a = 01in A for some k > 0; i.e. a;, € M; contradiction. Thus
AL CM

2. For k[x] = @;>ok- ¢, we have k[z], = (x). We know that Spec(k[x]) = {(0)}U{(f), f €
k[x] irreducible}. Let f = Z‘j a;x* € k[x] be an irreducible polynomial (d = deg(f)).
If (f) is an homogeneous ideal, then since f € (f), for any 4, a;x’* € (f), in particular
agr? € (f). Since ag # 0 is a unit, 2% € (f) and since (f) is a prime ideal x € (f); but
then ag = f—z(} ;51 aiz’™1) € (f) which, as (f) is a proper ideal, means ag = 0 i.e. z|f.
Since f is irreducible, we must have f = z (up to scaling); thus the only homogeneous
prime ideals in k[z] are (0) and (z) = k[x]+. So Proj(k[z]) = {(0)}.

3. Let p € P} = Proj(k[xo,...,2,]) be a closed point; then k[mo, .oy Tpl+ € p ie. there is
a f € k[xg,...,zn]+ such that f ¢ p. Since k[zg,...,Zy|+ is generated by (xoy ...y xn)
there is a i such that x; ¢ p ie. p € Dy(z;) ~ Spec( [%2,... ..., 22]) and it is a
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closed point; thus a maximal ideal of k[Z?, ...,%, e x—] and since k is algebraically

closed there is a n-uple (ag, ..., a;,...,a,) € k™ such that p = (——ao,...,%,...,%—

an) C Di(z;). But the contraction of (— —ag, ..., ;?, ol ;T —ay) by k[zg,...,xn] —
klxo,. .. ,xn]( ) is S (L0 — 0Ty« + oy Tim1 — Qj—1Tjy Tig] — Qip 1Ty « -+, Ty — ApT). SO associa-
ted to (ag,...,ai-1,1,ai41,. .. ,an) # (0,...,0) under the map of the exercise; showing
that it is surjective.

Assume that for (ag,...,a,) € k"™\{(0,...,0)} and (bo,...,b,) € k"™ \{(0,...,0)},
we have (aimj — ajl'i)m' = (blfL‘] — bjl‘i)i,j- Then for io 75 jo, aioxjo - ajowio S (blIL‘J -
bjx;); ;. For degree reasons, a;,xj, — ajoTi, = »_,; Ni,j(bixj — bjx;) for some A;; € k.
Evaluating at x; = 0 @ # 4o, jo, we get a;,zj, — joTi = i ]O(bma:]O bj,i,) thus
@iy = Nig,jobio and aj, = Aig jobjo- It is so for any pair (io, jo).

Since (bo,...,bn) € K"T\{(0,...,0)} there is a b; # 0. For simplicity, we can assu-
me by # 0. Then for any i,j > 0, looking at apx; — a;zo and agr; — a;xg we have
Xip = Z—g = Ajo thus a; = Z—gbi (and a; = ‘;—gb ) for any i. If a9 = 0 then we get
(ao,...,an) =0so ¢ # 0 and (ao, ..., an) = 32(bo, -, bn).

4. The map ¢ : Proj(A) — Spec(Ap) is given by p — p N Ay (induced by the ring
homomorphism Ay — A). Let a € Ay, it is homogeneous and ¢~*(D(a)) = {p €
Proj(A), a ¢ pNAp} = Dy (a) so ¢ is continuous.

Exercise 64. (Numerical polynomials, 4 points)

1. Since deg((f)) = r (with (g) = 1) the family (( ))r>0 is a basis of Q[T]. So any



P € Q[T] can be written ), ¢; (7;) with ¢; € Q. We have the identity

<T+1) B (T) (T +1—k) (T — k)

T r r! rl

e (T —k)  T—o(T — k)

7! r!
= W(T—kl—(T—(r—l)))

(%)

If the numerical polynomial P has degree 0, since P(n) € Z for n >> 0, this constant
term is an integer. So let d > 0 be an integer such that all numerical polynomials of
degree < d are of the desired form. Now, let P € Q[T] be a numerical polynomial
of degree d + 1. Since ((::))TZO is a basis of Q[T], we can write P = ZZ 0 Cdt1— Z(T)
with ¢; € Q. Now look at Q(T') = P(t+ 1) — P(T) € Q[T]. It is a numerical poly-

nomial (for n >> 0, P(n+ 1),P(n) € Z) and Q(T) = f+11 Car1— l((TJFl) - (T)) =

f+1 Cd+1— 1( T ) so @ has degree d. So by induction hypothesis ¢; € Z for any i < d.
Now take n >> 0 of the form n = (d + 1)k (i.e. £ >> 0) then P(n) = cqy1 +

S 0= 10y, (d+1)'k((d+1)!k—ill)-u((d—&-l)!k—i—i-l) where we see that (@FDE(d+HD1E- 1) ((d+1)1k—i+1)

77 since i < d+ 1. So cq1 = P(n) — d+11 Cap1 Z(d+1)!k((d+1)!k—i1.) ((d+1)1k— z+1) c7
for k >> 01i.e. cqr1 € Z; concluding the induction step.

S

2. Let us write Q(T) = Z;i 0 Cd— Z( ) with ¢; € Z by the previous question. Set P =

ij 0 Cd—il; +1) € Q(T). It is a numerical polynomial. A direct calculation shows that
P(T+1)—P(T) = Q(T) and deg(P) = deg(Q). So Af(n) = Q(n) = AP(n) forn >> 0.
Let ng € N such that foralln > ng, A(f)(n) = A(P)(n)ie. (f—P)(n+1) = (f—P)(n)
so VYn > ng, Z > (f — P)(n) = (f — P)(nog). Since P is a numerical polynomial P’ =
P+ (f — P(ng)) € Q[T] is also a numerical polynomial and f(n) = P’(n) for n >> 0.

Exercise 65. (Grothendieck group, 5 points)

1. Notice first that for any additive function A : C — Z, A(0) = A(0) + A(0) since the
sequence 0 — 0 — 0 — 0 — 0 is exact so A\(0) = 0.
Notice also that if M ~ N, A\(M) = A(N) and [M] = [N] € K(C) since then the iso-
morphism sits in the exact sequence 0 -+ M — N — 0 — 0 (and we have seen A(0) = 0).

If X\ : K(C) — Z is a group homomorphism. Define A : C — Z, C ~ X([C]). Since for
any short exact sequence 0 — M’ — M — M" — 0, [M] - [M'] — [M"] =0 € K(C),
we get additivity of A.

Conversely, given an additive function A : C — Z. We can naturally extend by additivity
A to a group homomorphism from the free abelian group X : @ Meobje)Z - M — Z,
nM +— nA(M). Then as X is additive, M — M’ — M" € ker(\') for any M, M’ M"
appearing in an exact sequence 0 — M’ — M — M"” — 0. So the subgroup K generated
by such sums is contained in ker(\'). So there is an induced group homomorphism
X K(C) ~ @peonjie)Z - M/K — Z. Moreover it is easy to see that the additive

function associated to \ is .

2. Define the group homomorphism ¢ : Z — K (Vecsq(k)), 1 — [k]. Notice that for n > 0,
by induction and decomposing M®™ into short exact sequence, [M®"] = n[M] in K(C).
Like wise [M & N| = [M] + [N] in K(C).

Notice that for any M € Vecsq(k), M ~ k% where d = dimy(M); thus [M] ~ [k9] =
d[k] in K(C). So ¢ is surjective.



We can define a group homomorphism ¢ : @ MeObj(Vecfd(k))Z - M — Z, by (extend
linearly) M + dimy(M). Then the subgroup K generated by the M’ — M + M" for
M, M', M" appearing in an exact sequence 0 — M’ — M — M" — 0 is contained
in the kernel of ¢. So there is an induced group homomorphism K(C) — Z. We have
¢ o =idz so ¢ is injective.

. C =mod(Ap). The proof goes exactly as in the lecture notes; the only difference is the
use of C — K(C) instead of C — Z.

The exact sequence 0 — K,, — M, w My g — Cphiqg — 0 can be broken in two exact

sequences : 0 — K,, — M, ¥ im(ay-) — 0 and 0 — im(ay:) = Myi1q — Cpig — 0.
So [M,] — [K,] = [im(an-)] = [Mp+d] — [Crnitd] in K(C) which gives [My,] — [My44] =
[Kp] — [Crtal in K(C) (as with the additive function in the lecture notes).



