
Solutions for exercises, Algebra I (Commutative Algebra) – Week 4

Exercise 15. (Scalar extension of Ext and Tor)
Remember that a module P is projective if and only if it is a direct summand of a free module
i.e. ⊕i∈IA ' P ⊕ Q for a A-module Q and a set I. Then we get ⊕i∈IB ' (⊕i∈IA) ⊗A B '
P ⊗B ⊕Q⊗B; thus P ⊗B is a again a projective module.

1. For Tori: Let us begin by a lemma

Lemma 16. Let M,N be A-modules and f : A → B a ring homomorphism. Then
there is a natural isomorphism of B-modules M ⊗AN ⊗AB ' (M ⊗AB)⊗B (N ⊗AB)

Beweis. To prove the Lemma, let us define π : M ⊗A N ⊗A B → M ⊗A B × N ⊗A B
by (m ⊗ b, n ⊗ b′) 7→ m ⊗ n ⊗ bb′. It is elementary to check that π is a B-bilinear
homomorphism. Now given a B-bilinear homomorphism f : M ⊗AB× (N ⊗AB)→ P ,
define f : M ⊗A N ⊗A B → P by m ⊗ n ⊗ b 7→ f(m ⊗ 1, n ⊗ b). Then f is B-linear
(because f is linear in the second argument) and f ◦π(m⊗ b, n⊗ b′) = f(m⊗n⊗ bb′) =
f(m⊗ 1, n⊗ bb′) = bf(m⊗ 1, n⊗ b′) = f(m⊗ b, n⊗ b′) using that f is B-bilinear. Thus
we have the claimed isomorphism.

Let us take a projective resolution of N :

· · · di+1→ Pi
di→ · · · d1→ P0

ε→ N → 0

Since B is a flat A-module, the functor − ◦B is exact so the sequence

· · · di+1⊗idB−→ Pi ⊗B
di⊗idB−→ · · · d1⊗idB−→ P0 ⊗A B

ε⊗idB−→ N ⊗A B → 0

is exact. Thus it yields a projective resolution of N ⊗AB. We can use these resolutions
to compute the Tori groups, namely the following sequences are exact (resp. in ModB
and ModA; with d0 = 0):

0→ im(idM⊗B⊗di+1⊗ idB)→ ker(idM⊗B⊗di⊗ idB)→ TorBi (M⊗B,N⊗B)→ 0 (*)

0→ im(idM ⊗ di+1)→ ker(idM ⊗ di)→ TorAi (M,N)→ 0 (**)

Since B is flat, tensoring (**) with B gives an exact sequence (in ModB):

0→ im(idM ⊗ di+1)⊗A B → ker(idM ⊗ di)⊗A B → TorAi (M,N)⊗A B → 0

so to get TorAi (M,N) ⊗A B ' TorBi (M ⊗ B,N ⊗ B), it is sufficient to prove that
ker(idM ⊗ di)⊗A B ' ker(idM⊗B ⊗ di ⊗ idB) and im(idM ⊗ di+1)⊗A B ' im(idM⊗B ⊗
di+1 ⊗ idB).

Let us begin with ker(idM ⊗ di)⊗A B ' ker(idM⊗B ⊗ di ⊗ idB): We have, by definition
the exact sequence:

0→ ker(idM ⊗ di)→M ⊗ Pi
idM⊗di→ M ⊗ Pi−1
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so tensoring with the flat module B, we get:

0→ ker(idM ⊗ di)⊗A B →M ⊗ Pi ⊗A B
idM⊗di⊗idB→ M ⊗ Pi−1 ⊗A B

The Lemma yields

0→ ker(idM⊗di)⊗AB → (M⊗B)⊗B (Pi⊗AB)
idM⊗B⊗di⊗idB→ (M⊗B)⊗B (Pi−1⊗AB)

so that we get ker(idM ⊗ di)⊗A B ' ker(idM⊗B ⊗ di ⊗ idB).

Similarly, the cokernel is defined by the exact sequence:

M ⊗ Pi+1 →M ⊗ Pi → Coker(di+1)→ 0

so tensoring with B we get:

(M ⊗B)⊗B (Pi+1 ⊗B)→ (M ⊗B)⊗B (Pi ⊗B)→ Coker(di+1)⊗B → 0

so that Coker(di+1)⊗B ' Coker(idM⊗B ⊗ di+1 ⊗ idB). Moreover the image is defined
by the exact sequence:

0→ im(di+1)→M ⊗ P i → Coker(di+1)→ 0.

By flatness of B, we get the exact sequence

0→ im(di+1)⊗B → (M ⊗B)⊗B (P i ⊗B)→ Coker(di+1)⊗B → 0

using the previous isomorphism we get im(di+1) ⊗ B ' im(idM⊗B ⊗ di+1 ⊗ idB) So
comparing (**)⊗B with (*), we get TorBi (M ⊗B,N ⊗B) ' TorAi (M,N)⊗A B.

2. For Exti: As reported the isomorphisms for the Exti’s do not exist without the ass-
umption M finitely generated. So let us prove the isomorphisms with the assumption
M finitely generated (for a counter-example related to the one given on the forum see
after the proof).
Moreover, we assume here that: A is noetherian. It will be defined later but the feature
that we will use is that for such rings, submodules of finitely generated modules are
finitely generated. Let us begin by the Lemma

Lemma 17. Let F be a finitely generated free A-module and N a A-module. Let f :
A→ B be ring homomorphism. Then there is a natural isomorphism HomA(F,N)⊗A
B ' HomB(F ⊗B,N ⊗B).

Beweis. Write F ' ⊕ni=1Aei. Then for anyN , we have an isomorphism ηN : HomA(F,N)⊗
B ' (Πn

i=1N)⊗ B ' (⊕ni=1N)⊗ B ' ⊕ni=1(N ⊗ B) ' Πn
i=1(N ⊗ B)HomB(F ⊗ B,N ⊗

B). Moreover (check) they give a natural transformation between HomA(F,−) ⊗ B :
ModA →ModB and HomB(F⊗B,−⊗B) : ModA →ModB i.e. for any homomorphism
of A-modules f : M → N , we have ηN ◦ (HomA(F,−) ⊗ B)(f) = (HomB(F ⊗ B,− ⊗
B))(f) ◦ ηM .

Following the recipe indicated after Corollary 5.5, one can construction a resolution of
M by free (thus projective) A-modules of finite rank: By assumption, one can choose
a finite set of generators m1, . . . ,mn of M as A-module. We can construct a surjective
homomorphism of A-modules ε : ⊕ni=1Aei = F 0 → M by (extend linearly) ei 7→ mi.
Since A is noetherian, its kernel is again finitely generated (as submodule of the finitely
generated A-module ⊕ni=1Aei) so we can find a free A-module of finite rank F 1 that

surjects unto ker(ε): d1
′

: F 1 → ker(ε). Then F 1
d1=iker(ε)◦d1

′

→ F 0 ε→M → 0 is exact and
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ker(d1) is again finitely generated. So by induction, we get a (projective) resolution of
M by free A-modules of finite rank:

· · · di+1→ F i
di→ · · · d1→ F 0 ε→M → 0

with F i free for any i.
Then, since B is a flat A-module, we get a resolution of M ⊗ B by finite free (thus
projective) B-modules:

· · · di+1→ F i ⊗A B
di⊗idB→ · · · d

1⊗idB→ F 0 ⊗B ε⊗idB→ M ⊗B → 0

So we have
0→ im(− ◦ di)→ ker(− ◦ di+1)→ Exti(M,N)→ 0

and

0→ im(− ◦ (di ⊗ idB))→ ker(− ◦ (di+1 ⊗ idB))→ Exti(M ⊗B,N ⊗B)→ 0

so to get the isomorphisms, it is sufficient to prove that ker(− ◦ di+1) ⊗ B ' ker(− ◦
(di+1 ⊗ idB)) and im(− ◦ di)⊗B ' im(− ◦ (di ⊗ idB)).

The following exact sequence defines the kernel:

0→ ker(− ◦ di+1)→ HomA(F i, N)
−◦di+1

→ HomA(F i+1, N)

so tensoring by the flat A-module B and using the Lemma we get:

0→ ker(− ◦ di+1)⊗B → HomB(F i ⊗B,N ⊗B)→ HomB(F i+1 ⊗B,N ⊗B)

i.e. ker(− ◦ di+1)⊗B ' ker(− ◦ (di+1 ⊗ idB)). And tensoring the exact sequence

HomA(F i−1, N)
−◦di→ HomA(F i, N)→ Coker(− ◦ di)→ 0

with B, we get Coker(− ◦ di)⊗B ' Coker(− ◦ (di ⊗ idB)).
Finally tensoring the exact sequence

0→ im(− ◦ di)→ HomA(F i, N)→ Coker(− ◦ di)→ 0

with the flat A-module B, and using the Lemma, we get im(−◦ di)⊗B ' im(−◦ (di⊗
idB)) hence the isomorphism.

Counter-example 18. Take A = Z, B = Q and M = Q and N = Z. Then B is a flat
A-module (follow the proof of Exercise 12 (ii) or it will proved soon that localization gives
flat algebras) but Ext1(M,N)⊗Q 6= 0 whereas, since B is a field (i.e. any B-module=vector
space is free hence projective) Ext1(M ⊗Q,N ⊗Q) = 0.

Beweis. Let us begin with the following fact (look here if you want to see a proof)

Lemma 19. If an abelian group M is divisible (i.e. for any m ∈M and k ∈ N>0, there is a
m′ ∈M such that m = km′) then it is an injective Z-module.

Now we have the natural exact sequence of abelian groups:

0→ Z→ Q π→ Q/Z→ 0

and since Q is divisible and Q/Z is also divisible (as quotient of a divisible group), the
sequence is actually an injective resolution of Z. So the Exti are given by the cohomology
groups of the sequence

0→ HomZ(Q,Q)
π◦−→ HomZ(Q,Q/Z)→ 0
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i.e. Ext0(Q,Z) ' ker(π ◦−) and Ext1(Q,Z) ' Coker(π ◦−). To prove the claim, we just have
to exhibit a homomorphism Q→ Q/Z not coming from a homomorphism Q→ Q.

We have HomZ(Q,Q)
f 7→f(1)
' Q.

Let us define (Q/Z)2 = {x ∈ Q/Z, 2kx = 0 for some k > 0}. It is a subgroup of Q/Z. It
can be proved that it is actually a direct summand of Q/Z. Let us write Q/Z ' (Q/Z)2⊕R.
Consider the homomorphism (check) α : (Q/Z)2 → (Q/Z)2 defined by a

2k
7→ a

2k+1 . Then
f ◦ π ∈ HomZ(Q,Q/Z), with f = α ⊕ idR ∈ HomZ(Q/Z,Q/Z) cannot be induced by an
element of HomZ(Q,Q).

Exercise 20. (Properties of elements in polynomial rings)

1. Let c ∈ A such that bc = 1 and n > 0 such that an = 0; then

(b+ a)c
n−1∑
i=0

(−ac)i = (1 + ac)
n−1∑
i=0

(−ac)i =
n−1∑
i=0

(−ac)i −
n∑
i=1

(−ac)i = 1− (ac)n = 1

so b+ a is invertible.

2. If a0 is a unit and for any i > 0, ai is nilpotent, then aix
i is nilpotent in A[x] and since

the set of nilpotent elements is an ideal (in particular a group), we get that
∑n

i=1 aix
i

is nilpotent. Then using the first question (in “A = A[x]), f = a0 +
∑n

i=1 aix
i is a unit.

To prove the converse, let us prove the following fact:

if f =

n∑
i=0

aix
i ∈ A[x] is a unit, then a0 is a unit and an (hence anx

n) is nilpotent (*)

Once (*) established, we conclude by a simple induction: take f =
∑n

i=0 aix
n a unit,

with n > 0 then by (*), a0 is a unit in A and an is nilpotent. In particular anx
n

is nilpotent so by the first question f − anx
n is again a unit. So if f − anx

n is not
constant, (*) yields that its leading coefficient, namely an−1, is nilpotent. So an−1x

n−1

is nilpotent; thus by the first question f−anxn−an−1xn−1 is a unit. So by an elementary
induction, we get that ai is nilpotent for i > 0.

Now to prove (*): take f =
∑n

i=0 aix
i (n > 0, an 6= 0) a unit and g =

∑d
i=0 bix

i its

inverse. We have 1 = fg =
∑n+d

k=0(
∑k

i=0 aibk−i)x
k and since A[x] is a free A-module,

we get a0b0 = 1 and for k > 0,
∑k

i=0 aibk−i = 0. The first equality reads a0 and b0 are

units. Now looking at the term of highest degree xn+d, we have anbd = 0. Let k ≥ 0
be an integer such that ai+1

n bd−i = 0 for any i ≤ k. Then looking at the coefficient of
xn+d−(k+1), since

0 =

n+d−(k+1)∑
i=0

aibn+d−(k+1)−i =
n∑

i=n−(k+1)

aibn+d−(k+1)−i

since ai = 0 for i > n and bn+d−(k+1)−i = 0 for n+ d− (k + 1)− i > d. So

0 = anbd−(k+1) +

n−1∑
i=n−(k+1)

aibn+d−(k+1)−i

and taking the product by ak+1
n , we get

0 = ak+2
n bd−(k+1) +

n−1∑
i=n−(k+1)

aia
k+1
n bd−((k+1)+i−n).

But for any i ≤ n − 1, k + 1 > ((k + 1) + i − n), so by our induction hypothesis,
ak+1
n bd−((k+1)+i−n) = 0 for any n− (k+ 1) ≤ i ≤ n. Thus ak+2

n bd−(k+1) = 0 proving that

for any 0 ≤ k ≤ d, ak+1
n bd−k = 0. In particular, we get ad+1

n b0 = 0 hence (product by
a0), a

d+1
n = 0 i.e. the leading coefficient of f is nilpotent as claimed.
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3. If all ai are nilpotent, then all aix
i are nilpotent and since NA[x] is an ideal we get that

f =
∑

i aix
i ∈ NA[x].

To prove the converse, let us prove the following fact:

If f ∈ A[x] is nilpotent, then its coefficient of least degree is nilpotent. (**)

Once (**), established, we conclude again by induction, as follows: take f =
∑n

i=m aix
i

nilpotent, with am 6= 0 and an 6= 0. By (**), am is nilpotent. Since NA[x] is an ideal
f − amx

m ∈ NA[x]. Applying (**) to f − amx
m we get that (if it is not 0) am+1 is

nilpotent. So by an elementary induction all ai are nilpotent.
Now (**) is easy: take f =

∑n
i=m aix

i nilpotent, with am 6= 0 and an 6= 0 and ` > 0

such f ` = 0. By a direct calculation, the term of least degree of f ` is (amx
m)`; thus we

get (amx
m)` = 0 i.e. a`m = 0.

4. If there is a a ∈ A such that af = 0 ∈ A[x] then by definition (A ⊂ A[x]), f is a
zero-divisor.
Conversely take f =

∑n
i=0 aix

i a zero-divisor of degree n (in particular an 6= 0).
Consider the non-zero (since f is a zero-divisor) ideal a ⊂ A[x] given by the anni-

hilator of f i.e. a = {P ∈ A[x], fP = 0}. Take g =
∑d

i=0 bix
i ∈ a of least degree

(∅ 6= {deg(P ), 0 6= P ∈ a} ⊂ N) say d 6= 0. If d = 0, the claim is true for f .
So let us analyse the case when d > 0. We have fg = 0 so looking at the leading term
we get that anbd = 0; in particular deg(ang) < d. But angf = an · 0 = 0 i.e. ang ∈ a;

by definition of d, ang = 0. Thus we have 0 = fg = anx
ng+

∑n−1
i=0 aix

ig =
∑n−1

i=0 aix
ig.

Looking again at the leading coefficient of
∑n−1

i=0 aix
ig, we get an−1bd = 0; in particular

deg(an−1g) < d and since an−1gf = 0, by definition of d, we have an−1g = 0. So by an
elementary induction we get that aig = 0 for any i. In particular, looking at the leading
term of aig we get bdai = 0 for any i. Therefore bdf = 0.

Exercise 21. (Short exact sequences)
Let denote α : M1 → M2. Let N3 ⊂ M3 be a submodule. Then ker(π) = π−1(0) ⊂ π−1(N3).
By exactness of the first sequence we have im(α) = ker(π) ⊂ π−1(N3) so that we can write
α = iN2/M2

◦ α for a homomorphism of A-module α : M1 → N2 and the inclusion iN2/M2
:

N2 ↪→M2. Since π is surjective, the induced homomorphism π|N2
: N2 → N3 is also surjective:

for n3 ∈ N3 ⊂M3 take a m2 ∈M2 such that π(m2) = n3 then m2 ∈ π−1(n3) ⊂ π−1(n3) = N3

i.e. m2 ∈ N2.
Moreover, ker(π) = π−1(0) ⊂ π−1(N3) = N2 so ker(π) = ker(π|N2

). We also have im(α) =
im(α). As a consequence im(α) = ker(π|N2

).
The injectivity of α follows from α = iN2/M2

◦ α and the injectivity of α.

Exercise 22. (Examples of nilradicals)

1. A = k[x]: A is an integral domain, so it does not contain any non-zero nilpotent. So
N = (0). We have seen in Exercise 16 that an element f =

∑
i aix

i ∈ k[x] is a unit if
and only if a0 is a unit and ai, for i > 0, are nilpotent. Since k is an integral domain (the
only nilpotent element is 0), we get that f ∈ k[x] is a unit if and only if f is a non-zero
constant polynomial. Now take f ∈ R. We have in particular that 1 + f is a unit thus a
constant polynomial. So f is a constant polynomial. If f 6= 0 then 1 + f(−f−1) would
be invertible but 1 + f(−f−1) = 0 contradiction. So f = 0. i.e. R = (0).

2. A = k[[x]]: We have seen in Exercise 8 that Spec(A) = {(0), (x)} and MaxSpec(A) =
{(x)}. Thus, using Proposition 7.2, we get N = (0) ∩ (x) = (0) and R = (x).

3. A = k[x]/(x3): we have seen in Exercise 8 that Spec(A) = {(x)} = MaxSpec(A) thus
N = (x) = R.

4. A = Z/18Z: We recall that there is a bijection between Spec(A) and V ((18)). A prime
ideal (p) ⊂ Z is in V ((18)) if and only if p|18. Therefore V ((18)) = {(2), (3)} and
Spec(A) = {(2), (3)}. Since MaxSpec(A) ⊂ Spec(A) and (2) 6⊂ (3) nor (3) 6⊂ (2), we
have MaxSpec(A) = Spec(A). Thus N = (2) ∩ (3) = (6) = R.
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Exercise 23. (Rings with one prime ideal)

((i)⇒ (ii) Then, by Proposition 7.2 N = p where p is the unique prime ideal of A and since a
maximal ideal is prime, Spec(A) = {p} implies that p is maximal. Let a ∈ A. If a is not
nilpotent, i.e. a /∈ p, then p 6⊂ (a) + p so (a) + p = A by maximality of p. So there are
b ∈ A and n ∈ p = N, such that ab + n = 1 thus, denoting ` > 0 an integer such that

n` = 0, we have a[b(
∑`−1

i=0 n
i)] = (1− n)(

∑`−1
i=0 n

i) = 1− n` = 1 i.e. a is a unit.

(ii)⇒(iii) Given a a ∈ A/N\{0} take a a ∈ A lifting a. Then a /∈ N i.e. a is not nilpotent so,
by hypothesis, a is a unit i.e. there is a b ∈ A such that ab = 1. In particular, we get
ab = 1 in A/N. So A/N is a field.

(iii)⇒(i) Since A/N is a field, N ⊂ A is a maximal ideal. Let p ⊂ A be prime ideal. By Proposition
7.2, N ⊂ p thus (N maximal) p = N. So N is the only prime ideal of A.

Exercise 24. (Radical
√
a)

1. Since any x ∈ ab can be written, x =
∑

i aibi with ai ∈ a and bi ∈ b we have x ∈ a and
x ∈ b i.e. ab ⊂ a ∩ b. Thus {p ∈ Spec(A), a ∩ b ⊂ p} ⊂ {p ∈ Spec(A), ab ⊂ p}, hence

(using Corollary 7.6)
√
ab = ∩

ab⊂p
p ⊂ ∩

a∩b⊂p
p =
√
a ∩ b.

Take a p ∈ Spec(A) such that ab ⊂ p. If a 6⊂ p, pick a ∈ a\a∩p; then for any b ∈ b, since
ab ∈ p we have b ∈ p; so b ⊂ p. We get {p ∈ Spec(A), ab ⊂ p} ⊂ {p ∈ Spec(A), a ⊂
p} ∪ {p ∈ Spec(A), b ⊂ p}; thus

√
a ∩
√
b = ∩

a⊂p
p ∩ ∩

b⊂p
p = ∩

a⊂p or b⊂p
p ⊂ ∩

ab⊂p
pp =

√
ab.

Now for x ∈
√
a ∩ b, choose k > 0, such that xk ∈ a ∩ b; we have x2k = xk · xk ∈ ab.

Therefore x ∈
√
ab. Thus

√
a ∩ b =

√
ab.

Finally, for x ∈
√
ab, choose k > 0, such that xk ∈ ab. Since ab ⊂ a and ab ⊂ b, we

have xk ∈ a and xk ∈ b so x ∈
√
a ∩
√
b. Thus

√
a ∩
√
b =
√
ab.

2. If
√
a = (1) then there is a n > 0 such that 1 = 1n ∈ a i.e. a = (1). Of course, conversely

if a = (1) = A, then a ⊂
√
a = A.

3. Since by Corollary 7.6
√
a is an intersection of prime ideals

√
a = ∩a⊂pp, if a =

√
a,

a is an intersection of prime ideals. Conversely, if a is an intersection of prime ideals
a = ∩

p∈I
p, for some non empty subset I ⊂ Spec(A). Now, take x ∈

√
a and k > 0 such

that xk ∈ a = ∩
p∈I

p; then we have in particular xk ∈ p for any p ∈ I. Thus we get x ∈ p

for any p ∈ I, i.e. x ∈ ∩
p∈I

p = a, proving
√
a ⊂ a (hence a =

√
a).

Exercise 25. (Faithfully flatness)
Let M ' ⊕i∈IA be a free A-module and f ∈ HomA(N1, N2) such that f ⊗A idM = 0.
Fix a i ∈ I. For any n1 ∈ N1, then 0 = f ⊗A idM (n1 ⊗ 1) = f(n1) ⊗A 1 i.e. f(n1) = 0
(we have a homomorphism of A-module N2 ⊗A A ' N2, n ⊗ a 7→ an). Thus f = 0. So
HomA(N1, N2)→ HomA(M ⊗N1,M ⊗N2) is injective.
A module is projective if and only if it is a direct summand of a free module (see Solution to
Exercise 12). And a direct summand of a flat (a fortiori a free module) module is flat (e.g.
because tensor product commutes with direct sum). So a projective module is flat.
We have seen that for the product ring A = k[x]/(f)× k, where f ∈ k[x] is a polynomial of
degree > 0, and the A-module M = 0×k ⊂ A, M is a projective module (as direct summand
of the free module A). But HomA(A,A)→ HomA(M ⊗A︸ ︷︷ ︸

'M

,M ⊗A) is not injective as seen by

the image of “the projection (not exactly) to the first summand p : A → A, (r, a) 7→ (r, 0).
We have p⊗ idM ((r, a)⊗A (0, t)) = (r, 0)⊗ (0, t) = (r, 0) · (0, t)⊗ 1 = 0.

6


