Solutions for exercises, Algebra I (Commutative Algebra) — Week 7

Exercise 33. (Extension under flat ring homomorphisms)

(one direction is obvious) Assume MaxSpec(A) C im(y) and consider a A-module such that
M ® B =0.1f M #0, take 0 #m € M. The cyclic submodule (m) C M generated by m is
isomorphic to A/a for a C A (since 0 # m) the annihilator of m (look at A — M, a — am;
its kernel is the annihilator of m and it is surjective onto (m) by definition). Since B is a flat
A-algebra, we have an induced inclusion A/a ® B < M ® B; thus A/a® B = 0.

Since B is a flat A-algebra, tensoring the exact sequence

0—a—=A—A/a—0
with B we get an exact sequence:
0—-a®B—B—A/a® B — 0.

With the previous vanishing we get B ~ a® B as B-modules . Looking at the exact sequence,
we see that the isomorphism is givien by a ® b — a - b = f(a)b; thus B ~ a ® B means
B ~ aB = a® as B-modules.

But since a C A, it is contained in a maximal ideal m € MaxSpec(A). We get (1) = a® C m®.
But by assumption, there is a p € Spec(B) such that f~!(p) = ¢(p) = m; which yields
m® C p C B (as f(m) C p and m® is the smallest ideal containing f(m)). Contradiction. So
there is no such M > m #01ie. M =0.

For a counterexample, take f : Z < Q the natural inclusion. We know that Q ~ Z is a
flat Z-algebra but ¢ : Spec(Q) = (0) — Spec(Z) is not surjective (as a map from a finite
set to an infinite). Then the cyclic Z-module Z/Z is non-zero but Z/247 & Q = 0 since
n@l=n®3 =24n® 5 =0.

Exercise 34. (Surjectivity of maps induced by flat ring homomorphisms)

1. Let us define p : Ng — N by b ® n — bn (the later multiplication uses the B-module
structure on N). It is a well-defined homomorphism of A-modules (and B-modules) and
pog(n) =p(l1®n)=mnfor any n € N i.e. pog =idy. Thus g is injective and presents
N as a direct summand of Ng.

2. If ¢ is surjective then given a m € MaxSpec(A), there is a p € Spec(B) such that
f~Y(p) = m. Thus f(m) C p and m® C p C B (m® is the smallest ideal containing f(m)).
Conversely assume that for any m € MaxSpec(A), m® C (1) and take am € MaxSpec(A).
Since f(m) C m® we have m C f~!(m®). Now if there is a z € f~1(m®)\m, then
T € A/m is non-zero thus invertible (since A/m is a field) i.e. there is a y € A and
a m € m, such that xzy = 1 4+ m. Applying f, we get f(x)f(y) = 1 + f(m); but
f(m) € f(m) C m® and f(z) € m® by assumption, hence 1 = f(z)f(y) — f(m) € m°.
Contradiction. So f~!(m¢) = m. Then by Corollary 9.15, we have m € im(p). As a
consequence MaxSpec(A) C im(p).

Now let p € Spec(A). By Corollary 9.15, it is sufficient to prove that f~!(p°) = p to
have p € im(yp).

By definition p C f~!(p®) so let us consider the A-module M = f~1(p®)/p. Since B is
a flat A-algebra, tensoring

0= f7'p) = A= A/fTH(p)A =0
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with B, we get an exact sequence of B-modules:
0= f'p)®B—B— A/f *(p*)A® B — 0.

But A/f~'(p®)A®B ~ B/ f~1(p*)°B and (check it) f~(p®)® = p®so A/f 1 (p®) AR B ~
B/p¢B. Thus the exactness of the above sequence means that f~!(p¢) ® B ~ p¢ (by
a® b+ ab) as B-modules.

Likewise, using flatness of B, we have an exact sequence of B-modules:

0—-p®B—B—A/p®B—0.

Again A/p ® B~ B/p°B (by a ® b+ ab) so that the exactness of the above sequence
means p @ B ~ p°.
Now by definition, we have an exact sequence

0—=p—fr1p)—>M—=0
and since B is flat, we get an exact sequence of B-modules
0=p®B— f1(p)®B - M ® B — 0.

By what we have seen the two first terms are both isomorphic to p¢ and the isomor-
phisms are compatible with the natural inclusion. Thus the first map of the exact
sequence is an isomorphism; which means M @ B = 0. By the previous exercise, we
get M = 0ie. p = f~1(p®). Now, Corollary 9.15 tells us that p € im(y). Hence ¢ is
surjective.

. We can use the previous question to solve this one. Remember that the ring A, is
local i.e. only one maximal ideal which is p,. Suppose py = (1). Then we can find

pE€p,se A\p,t € B\qand b € B such that % = I}JES)? € By.; which means that
t'tf(s) = t'bf(p) in B for some ' € B\g. But on one hand f(p) € p¢ C q which
yields #' fb(p) € q and on the other, ¢t € B\q and s € A\p = A\f~1(q) i.e. f(s) € B\q,
contradicting the fact that q is prime. So py C (1). It remains to prove that f, : Ay — By
is flat. By Corollary 8.28, B, is a flat Ap,-module. Set S = f(A\p) = f(A\f~(q)) C B
and S’ = B\q. We have ker(f) = f~1(0) C f~!(q) = p so S is a multiplicative subset
of B and S C S’. Moreover by definition of the A-module structure on B, S™!B ~ By;
let us denote h : B — S~ B the localization. Let us prove that B, is the localization of
B, with respect to h(S’).

Let us define g : S7!B — S""!B by % > %. It is well-defined since S C S’: if % =

f( 7 €S !B then f( )f( )b = f(t)V' f(s) in B; but since f(t)f(s'), f(t)f(s)e S S
this tells us that m = f( € S"—1B. 1t is easy to see that it is a ring homomorphism.

Moreover for ﬁ € h(S"), we have 9(5 G )) f(s) € S'7!B is invertible.

Now given a ring homomorphlsm q : ST'B — C such that q(h(S’ )) C C*, define
7:571B — Cby e q2)qg($)" It is a well defined map: for 2 = gi € S71B we
have ts'b = tsb in B for a t € S'; which yields ¢(* )(q(%’)q(%) q($)q (le)) =01in C.
But ¢(1) € C* by assumption; so q(%)q(%) =q({)q (Tl in C. Again q(ST) q(§{) € C* by

SI

assumption; thus ¢(§)q($)™! = q(4)q(5) "
It is a ring homomorphism (left to check) and for any b € B, g

9(1) = 6()?) a(9).

Since for f(s) € S C 5, () € S71B is invertible, we get q( ()) = (f(l )~tin C;
likewise q(f(ls)) — q(f( )) (S) €SB,
b b1 b1 b f(s) b
1955y = 19Qa(55) =a9(Nale(75)) = alg()a(7) t= 1)

Thus ¢ = G o g. Uniqueness of the factorization through ¢ is checked likewise (looking
first at % and then taking the inverses). So ¢ : S™'B — S'~!B is the localization of



S~1B with respect to h(s'). But S'"! B ~ By by definition. Thus By is a flat By-algebra
and the later is a flat Ap-algebra, as a result By is a flat Ap-algebra. And we can apply
the previous question.

Exercise 35. (Algebras of invariants)

Notice that B is indeed an A-algebra: denoting f : A — B the ring homomorphism giving

the structure of A-algebra, we have, for a € A and ¢; € G, we have g(f(a)) = f(a)g(1) =

f(a)-1 = f(a) since g; is a homomorphism of A-algebras (i.e. an A-linear ring homomorphism)

i.e. f(A) C BY Moreover for b, € B, g(b+V') = g(b)+g(t') = b+ and g(bb') = g(b)g(V') =

bb'.

We have f(A) ¢ BY C B with B of finite type over A, the later being Noetherian. So if we

knew that B was a finite B¢-module, Proposition 11.24 would tell us that B¢ is Noetherian.

So Let us prove that B is a finite B®-module.

Since f(A) € BY and B is of finte type over A, we get that B is a finite type over BY. Thus

by Corollary 11.11, it is sufficient to prove that B is integral over B to get that B is a finite

B%-module.

Now let b € B. It is annihilated by (z — b) € B[z] thus it is also annihilated by the monic

polynomial P = H,eq(z — g(b)) € Blz]. Let us prove that P € BY[z] actually: the usual

expansion (B commutative) of P gives P = Z'ﬁlo 0i61-i((9(b))geq)x" where oy, (set og = 1)

designates the k™ elementary symmetric function on |G|-variables oy, : (Xi,... X)) =
> HleXz‘j- But since the g; € G are A-algebras homomorphisms (respect sums

1< <ig- <1k <|G]|

and products) and for any g € G, G — G, ¢ — g¢' is a bijection (G is a finite group;

injectivity is clear and conclude by cardinal), for any g € G (set go = idp) and k,

9(o1(0,91(b); - - -, gjc-1(b))) = Y. Miig(g,0) = Y. g0

1<iy <ig-<i <|G| 1< <<l <|G]

= 0k(b,91(b), ..., 9G1-1(b))

proving that o (b, g1(b), ..., 9,g-1(b)) € BY for any k i.e. P € B%[z] and is monic. So b

is integral over B¢ and since b was arbitrary B is integral over B¢ which allows us to use
Corollary 11.11 and Proposition 11.24 to conclude.

Exercise 36. (Localization of integral ring homomorphisms)

Notice first that k[z] is indeed integral over over k[z? — 1]: z is annihilated by the monic
polynomial X2 — (z? — 1) + 1 € k[z? — 1][X] so it is integral over k[z? — 1]. Hence k[z? —
1][x] = k[z] is a finite k[2® — 1]-module by Proposition 11.6 and the same proposition gives
us integrality of any element in k[z].

Since x — 1 is irreducible (z — 1) is a prime ideal and (z — 1)¢ = (z — 1) N k[x? — 1]. If
f € k[z? — 1] it can be written f = ag + > ;5 ai(2? — 1)* with a; € k. Iff is in (z — 1)¢, it
vanishes at 1 thus ag = 0. Conversely since 22 — 1 = (v — 1)(z + 1) any f € k[z? — 1] which
has no constant term is in (z — 1). Thus (z — 1)¢ = (x — 1) Nk[z? — 1] = (2% - 1).

Since char(k) # 2, we have 1 # —1; as a consequence z+1 ¢ (x — 1) (because any polynomlal

in the principal 1deal vanishes at 1 and x + 1 does not). Thus ? € k[r](z—1). Assume Tﬂ

is integral over k[z? — 1](z2—1)- Then we have ﬁ + D i1 gz (zil)l = 0 € k[z](y—y) for

some % € k[z* — 1];2_1). We have

Z fi 1 (Hkgk) + D icn Mhige fi(e + 1)
:U+1 i (x4 1) Mg (z + 1"

which means ¢((Ixgx) + > cpn_1 Mezigrfi(z + 1)""") = 0 in k[z] for some g ¢ (z —1). 1
particular g # 0, thus (k[z] integral domain) (Il;g) + Yicn—1 Mezigrfilz +1)" = 0 in
klz]. Now (z + 1)|Tgigr fi(x +1)" " for i <n — 1, thus (z + 1)|Hkg/rc But g ¢ (22 — 1) for
any k which contradicts the fact that (z + 1) is a prime ideal. So — is not integral over
]{7[1‘ - 1](:”2,1)



Exercise 37. (Noetherian topological spaces)

1. Assume A is Noetherian. Let Vi D Vo D V3--- D V,; D --- be a descending chain of
closed subsets of Spec(A). By definition of Zariski topology, we can find ideals (a;);en of
A such that V; = V(a;) for any i € N. Now the inclusion V' (a;+1) C V(a;) is equivalent
to y/a; C \/a;¢1 for any i. Thus the descending chain of closed subsets gives rise to an
ascending chain of ideals of A:

vap Cyax C--- Cyay C---

which, since A is Noetherian, becomes stationary i.e. there is a n € N, such that
Vam = y/a, for any m > n, which means V;,, = V(a,,) = V(a,) =V, for any m > m
i.e. the descending chain of closed subsets becomes stationary. Hence Spec(A) is a
Noetherian topological space.

The typical example of a non-Noetherian ring is the polynomial ring in infinitely many
variables A = k[(2;)ien.,] but its spectrum is not easy to describe. But let us consi-
der B = A/(z1,23,23,...,2%,...). We have Spec(B) = V((z1,23,23,...,2%,...)) C
Spec(A) and (1,22, x3,...,Tn,...) C Np. Since for any p € Spec(B), Np C p, we get
Spec(B) = {(z1,x2,23,...,Zn,...)} (since (x1,z2,23,...,%p,...) € Spec(A) is maxi-
mal) so Spec(B) is a Noetherian topological space. But

(72) C (2,73) C (T2,73,Ta) C -+ (T2,T3,...Tn) C -+
is ascending chain of ideals which is not stationary.

2. Tet p € im(g) C Spec(A) then o~ (p) = {q € Spec(B), () = p}. Now /1 (q) = pis
equivalent to f(p) = im(f)Nq and ker(f) C p: indeed if f~1(q) = p then f(p) C gNim(f)
and if y € gNim(f) then thereisa x € A q > y = f(x) but this means z € f~Yq) =p;
thus y = f(p) i.e. f(p) = im(f) N q. Moreover ker(f) = f~1(0) C f~1(q) = p Con-
versely, if f(p) = im(f) N q and ker(f) C p then C f~Xq) and if z € f71(q), we

have f(z) € qNim(f) = f(p) i.e. there is a a’ 6 p such that f(x) = f(a); then

r=2a"+(x—2') ep+ker(f)=p.

Next, f(p) = im(f)Nq and ker(f) C p if and only if qN f(A\p) = 0 and f(p) C q: indeed
q

i
if f(p) =1im(f) N q (then obviously f(p) C q) and ker(f) C p, then if y € gN f(A\p) C
g Nim(f) then we can write y = f(x) with € A\p and y = f(2') with 2/ € p. So
x —a' € ker(f) C p; thus = € p contradiction. Conversely, if g N f(A\p) = 0 and

f(p) C q, since f(ker(f)) = {0} C q we get ker(f) C p. We have im(f)\f(p) C f(A\p)
and if y € f(A\p) then we can write y = f(x) for x € A\p. If y € f(p), we can also

write y = f(a') with 2’ € p; then = 2’ 4+ (x — 2’) € p + ker(f) C p; contradiction. So
m(f)\f(p) = f(A\p). Thus q N f(A\p) = 0 means g Nim(f) C f(p). But as we have
f(p) C q, we get g Nim(f) = f(p).

As a consequence,

{a € Spec(B), f~(a) = p} = {a € Spec(B), anf(A\p) = D and f(p) C a} = {q € Spec(By), f(p) C q}

since by Proposition 9.14 Spec(By) ~ {q € Spec(B), qN f(A\p) = 0}. Now, since q is
qn ideal, f(p) C g means p° C q thus

{q € Spec(By), f(p) C q} = {q € Spec(By), p° C q} = V(p®) = Spec(By/p°By) = Spec(By/pBy).
But B, /pB, ~ B, ®a4, Ap/p ~ B®a A ®a, Q(A/p) ~ B®4 Q(A/p). Thus

{a € Spec(B), f7'(a) =p} = Spec(B @4 4p/p).

Now let us choose a surjective homomorphism of A-algebra ¢ : Alzy,...,2,] — B;
tensoring with Q(A/p) we get a surjective Q(A/p)[x1,...,xn] - B @4 Q(A/p). The
field Q(A/p) is Noetherian so B ®4 Q(A/p) is Noetherian. Hence according to the first
question, {q € Spec(B), f~'(q) =p} = Spec(B ®4 A/p) is Noehterian.



