
Exercises, Algebra I (Commutative Algebra) – Week 8

Exercise 38. (Going-up property, 3 points)

Let us begin by proving that for a prime ideal p ∈ A the closure {p} of the point p ∈ Spec(A)
is V (p):

By definition, we have {p} = ∩
{p}⊂C,

C⊂Spec(A) closed

C. In Zariski topology, we get {p} = ∩
a⊂p

V (a).

For any a ⊂ p, if q ∈ V (p) i.e. p ⊂ q, we have in particular a ⊂ q hence V (p) ⊂ V (a).
Thus V (p) ⊂ ∩

a⊂p
V (a). Obviously p ∈ V (p) and V (p) is closed, so ∩

a⊂p
V (a) ⊂ V (p) i.e.

V (p) = ∩
a⊂p

V (a) = {p}.

(⇐) Assume ϕ is closed. Let q ∈ Spec(B) and set p = qc = ϕ(q). Then ϕ(V (q)) is a clo-

sed subset of Spec(A) containing p. Thus V (p) = {p} ⊂ ϕ(V (q)). In particular, for any
p ⊂ p′ ∈ Spec(A), the inclusion of ideals translates into p′ ∈ V (p), which yields p′ ∈ ϕ(V (q))
i.e. there exists a q ⊂ q′ ∈ V (q) such that q′c = p′.

(⇒) We want to prove that ϕ(V (b)) is a closed subset for any ideal b ⊂ B. First, if b = q is
a prime ideal, then setting p = ϕ(q) = qc, we have the easy inclusion ϕ(V (q)) ⊂ V (p). For a
p′ ∈ V (p) (i.e. p ⊂ p′), by the going-up property, we can find a q′ ∈ V (q) such that p′ = ϕ(q′).
So V (p) ⊂ ϕ(V (q)) i.e. ϕ(V (q)) = V (p). Thus ϕ(V (q)) is a closed subset of Spec(A).

Let us prove that any Noetherian topological space can be written as a finite union of irre-
ducible closed subsets: Let X be a Noetherian topological space. Let us denote S the set of
closed subset of X not satisfying the property. If S 6= ∅, we can find a V ∈ S which is minimal
in S: indeed start with a V1 not satisfying the property. If it is not minimal, we can find a
closed subset V2 ⊂ V1 not satisfying the property and if V2 is not minimal, we can repeat
the procedure to get a descending chain of closed subsets · · ·Vn ⊂ · · · ⊂ V2 ⊂ V1. Since X is
Noetherian, the chain becomes stationary Vn = Vk for any k ≥ n. Then Vn is minimal.
Since V cannot be written as a finite union of irreducible closed subset, it is itself not ir-
reducible so write it as V = C1 ∪ C2 for two closed subsets satisfying Ci ( V , i = 1, 2.
As V is minimal, Ci /∈ S, i = 1, 2 so we can write Ci = ∪ni

k=1Wi,k where Wi,k ⊂ Ci are clo-
sed irreducible subsets. But then V = ∪n1

k=1W1,k∪∪n2
k=1W2,k, contradicting V ∈ S. Thus S = ∅.

In Spec(A) (for any ring A), V (a) is an irreducible closed subset if and only if
√
a is a prime

ideal.
If
√
a is a prime ideal, let a1, a2 be ideals such that = V (

√
aa) = V (a) = V (a1) ∪ V (a2) =

V (a1 ∩ a2). Then we have a1 ∩ a2 ⊂
√
a1 ∩ a2 =

√
a. If a1\

√
a 6= ∅ and a2\

√
a 6= ∅ then take

a1 ∈ a1\
√
a 6= ∅ and a2 ∈ a2\

√
a 6= ∅; we have a1a2 ∈ a1 ∩ a2 ⊂

√
a; contradicting

√
a prime.

Thus either a1 ⊂
√
a (which yields

√
a1 ⊂

√
a) or a2 ⊂

√
a (which yields

√
a1 ⊂

√
a). Together

with V (ai) ⊂ V (a) (by assumption), we get
√
a =

√
a1 or

√
a =

√
a2 i.e. V (a) = V (a1) or

V (a) = V (a2).
Conversely, if

√
a is not prime, take a, b /∈

√
a such that ab ∈

√
a. As a /∈

√
a = ∩a⊂p, primep

there is a prime ideal a ⊂ pa not containing a. Thus (a) + a ( pa, in particular V ((a) + a) (
V (a). Likewise, V ((b) + a) ( V (a). But V ((a) + a) ∪ V ((b) + a) = V (((a) + a) · ((b) + a)) =
V ((ab) + a) = V (a). So V (a) is not irreducible.

Solutions to be handed in before Tuesday June 2, 4pm.



Putting things together, let V (b) ⊂ Spec(B) be closed subset. As B is Noetherian, B/b is
also Noetherian. So V (b) ' Spec(B/b) is a Noehterian topological space and as such can be
written as a finite union of irreducible closed subsets, which, by the discussion above, are of
the form V (q) for some prime ideal b ⊂ q. So we can find prime ideals q1, . . . , qn containing b
such that V (b) = ∪ni=1V (qi). Then ϕ(V (b)) = ϕ(∪ni=1V (qi)) = ∪ni=1ϕ(V (qi)) which is closed
as finite union of closed subsets (by the first point) V (qci ).

Exercise 39. (Cusp, 4 points)
First y2−x3 is irreducible in k(x)[y]: indeed assume we can write y2−x3 = (y−p(x))(y−q(x));
then p(x) + q(x) = 0 and p(x)q(x) = −x3 i.e. p(x) = −q(x) and q(x)2 = x3 ∈ k(x); but
x3 is not a square in k(x). So y2 − x3 is irreducible in k(x)[y], a fortiori in k[x, y]. Thus
A = k[x, y]/(y2 − x3) is integral.

Since x /∈ (y2 − x3) (for degree reasons), x 6= 0 in A thus y
x ∈ Q(A). A direct calculation

shows that y
x

2 − x = y2−x3

x2 = 0 so T 2 − x ∈ A[T ] annihilates y
x i.e. y

x is integral over A.

Assume y
x ∈ A; then there is a p ∈ k[x, y] such that p ∈ A satisfies p2 − x = 0 i.e.there is a

q ∈ k[x, y] such that p2 − x = (y2 − x3)q. Looking at (0, 0), we see that p has zero constant
term.
Let us define, now f : k[x, y]→ k[t], by x 7→ t2, y 7→ t3 (extend by k-algebra rules). By direct
calculation (y2−x3) ⊂ ker(f). So that f(p)2− t2 = 0 in k[t]; which gives f(p) = t. But im(f)

contains no element of degree 1. So there is no such p i.e. y
x /∈ A. Thus A is not normal. In

particular, we cannot have A ' k[t] as rings.

Now, let p ∈ ker(f), and let us write the division of p by y2 − x3 (in fact in k(x)[y] and
use that y2 − x3 is monic), p = (y2 − x3)q + r in k[x, y], with degy(r) ≤ 1. So we can write

r = r1(x)y + r2(x). Taking the image by f , we get 0 = f(p) = f(r) = r1(t
2)t3 + r2(t

2); but
any monomial of r1(t

2)t3 has odd degree and any monomial in r2(t
2) has even degree. Thus

r2(t
2) = 0 and r1(t

2) = 0 so (writing down the coefficients) r1 = 0 = r2 i.e. ker(f) = (y2−x3).
Thus there is an induced injection f : A ↪→ k[t].
We get from that and the universal property of localization (look at the composition A ↪→
k[t] ↪→ k(t)), a field extension (by abuse of notations, let us denote it the same way)

f : Q(A) ↪→ k(t). In k[t] ↪→ k(t), we have t = f(y)

f(x)
= f( yx). Thus t2 − f(x) = 0 in k(t)

i.e. t is algebraic over Q(A). But since T 2−f(x) ∈ f(A)[T ], the identity says that t is integral
over A ' f(A), so A ↪→ k[t] is integral (Prop 11.6).

We get a map ϕ : A1
k → Spec(A) = V (y2 − x3) ⊂ MaxSpec(k[x, y]).

Assume from now on, that k is algebraically closed.
For λ ∈ k, x − λ2, y − λ3 ∈ f−1((t − λ)) since t2 − λ2 = (t − λ)(t + λ) and t2 − λ3 =
(t− λ)(t2 − λt+ λ2). Thus (x− λ2, y− λ3) ⊂ f−1((t− λ)). But (x− λ2, y− λ3) is a maximal
ideal in k[x, y] so (x− λ2, y − λ3) = f−1((t− λ)). Thus the restriction of ϕ to the MaxSpec
is given by ϕ′ : MaxSpec(k[t]) → MaxSpec(k[x, y]), λ 7→ (λ2, λ3). It is easy to see that the
fibers of ϕ′ (once (λ2, λ3) given, λ = λ3/λ2) consist of one point when they are not empty.
So we get a bijection ϕ′ : MaxSpec(k[t]) ' MaxSpec(A) but as we have seen by the failure of
A to be normal A is not isomorphic to k[t].

Exercise 40. (Ring of invariants, 3 points)

1. It was part of the solution of Exercise 35. Let us quickly repeat the argument (see
last week’s solutions): for a ∈ A, set f = Πg∈G(x − g(a)) ∈ A[x] and is monic; it is
a degree |G| polynomial and f(a) = a (as one of the g ∈ G is the identity). As A is
commutative, the coefficients of f are the evaluation of elementary symmetric functions
in |G|-variables at (g(a))g∈G. For a g0 ∈ G, tg0 : G→ G, g 7→ g0 ·g is a bijection because
injective (G is a group) self-map of a finite set (thus surjective by cardinality). Since
g0 is a ring homomorphism (and as such respects sums and products), the coefficients
of f are left invariant by g0; and it is so, for any g0 ∈ G so the coefficients of f are, in
fact, in AG, which means f ∈ AG[x]. Thus a is integral over AG.
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2. Let us first prove (by induction) the result stated as (corrected) hint: the case of one
prime is obvious. Let k ≥ 1, such that for any p1, . . . , pk prime ideals and an ideal a,
a 6⊂ pi, ∀i implies a 6⊂ ∪ki=1pi. Let p1, . . . , pk+1 be prime ideals (none being contained
in another otherwise the induction hypothesis gives the result) and a an ideal such that
a 6⊂ pi for any i. By induction hypothesis, there is a x ∈ a\∪ki=1 pi. We claim that there
is a y ∈ (a · Πn

i=1pi)\pk+1; otherwise a · Πn
i=1pi ⊂ pk+1 but since no pi is contained in

pk+1 for any i ≤ k, we can find pi ∈ pi\pk+1; then for any a ∈ a, a ·p1 · · · pk ∈ pk+1 thus
a ∈ pk+1 i.e. a ⊂ pk+1 contradiction.
So we can choose y ∈ a ·Πn

i=1pi\pk+1. Then x+ y ∈ a and if for some i ≤ k, x+ y ∈ pi,
then x ∈ pi contradiction. Thus x, x + y ∈ a\ ∪ki=1 pi. If x /∈ pk+1 then we have found

an x ∈ a\ ∪k+1
i=1 pi; otherwise x ∈ pk+1 but then x + y /∈ pk+1 (otherwise y ∈ pk+1;

contradiction) i.e. we have found x+ y ∈ a\ ∪k+1
i=1 pi.

Now let q1, q2 ∈ ϕ−1(p). For a a ∈ q1, set b = Πg∈Gg(a); as idA ∈ G, b ∈ q1 and for

any g ∈ G, g(b) = Πh∈Gg ◦ h(a) = Πh′∈Gh
′(a) = b so b ∈ AG i.e. b ∈ q1 ∩ AG = qc1 =

ϕ(q1) = p. But we also have p = ϕ(q2) = q2 ∩ AG thus b = Πg∈Gg(a) ∈ q2 i.e. (q2
prime) ga(a) ∈ p2 for some ga ∈ G. Thus q1 ⊂ ∪g∈Gg−1(q2). The g−1(q2) are prime
ideals so by the above discussion, there is a g such that q1 ⊂ g−1(q2). But we have
q1∩AG = p = q2∩AG = g−1(q2)∩AG so that by the 5th step of the proof of the Going-
up theorem (Thm 11.33), we get q1 = g−1(q2), proving transitivity of G on ϕ−1(p).
So we have a surjective map G� ϕ−1(p), proving that ϕ−1(p) is finite.

Exercise 41. (Circle as a spectrum, 4 points)
When k = C. We can define the ring automorphism C[x, y] → C[x, y] given by x 7→ x − iy,
y 7→ x + iy (the inverse being defined by x 7→ (x + y)/2, y 7→ (x − y)/2i) by which we can
see that we can take x′ = x + iy and y′ = x − iy as indeterminates (i.e. C[x′, y′] ' C[x, y]).
Under this change of variable, we have x2 + y2 − 1 = (x + iy)(x − iy) − 1 = x′y′ − 1 so
A ' C[x′, y′]/(x′y′ − 1).
Let us define g : C[x′] → C[x′, y′]/(x′y′ − 1) the composition of the natural ring homo-
morphisms. Then g(x′) is invertible since g(x′)y′ = 1. Now for a f : C[x′] → B a ring
homomorphism such that f(x′) ∈ B∗, define f : C[x′, y′]/(x′y′ − 1) → B by x′ 7→ f(x′) and
y′ 7→ f(x′)−1 (extend by ring rules). It is well defined because it is induced by the corre-
sponding map f ′ : C[x′, y′] → B for which we see that (x′y′ − 1) ⊂ ker(f ′). It is easy to
check that it is a ring homomorphism through which f factorizes /(f = f ◦ g). Moreover
if h : C[x′, y′]/(x′y′ − 1) → B is another ring homomorphism such that f = h ◦ g, we have
h(x′) = h(g(x′)) = f(x′) = f(x′). Since x′ ∈ C[x′, y′]/(x′y′ − 1) is invertible (y′ being its

inverse), we have h(y′) = h(x′−1) = h(x′)−1 = f(x′)−1 = f(x′)
−1

= f(x′−1) = f(y′). Thus
h = f proving uniqueness of the factorization of f through g. As a conclusion g : C[x′] →
C[x′, y′]/(x′y′ − 1) is the localization of C[x′] with respect to {x′k, k ≥ 0}.
So we have a ring isomorphism A ' C[x′]x′ . But C[x′] is factorial and the localization of a
factorial ring is factorial.

When k = R. One idea is to use again a polynomial ring with one variable. Euclidean division
by the monic polynomial x2 + y2 − 1 yields that for any f ∈ R[x][y] (⊂ R(x)[y]) there is a
unique (f1, f2) ∈ R[x]2 such that f = f1(x)y + f2(x) mod(x2 + y2 − 1). Define N : A→ R[x]
by f 7→ (x2− 1)f1(x)2 + f2(x)2. By the above uniqueness it is a well-defined map (not a ring
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homomorphism at all). Moreover

N((f1(x)y + f2(x))(g1(x)y + g2(x))) = N(f1g1y
2 + (f1g2 + f2g1)y + f2g2)

= N(f1g1(y
2 + x2 − 1− x2 + 1) + (f1g2 + f2g1)y + f2g2)

= N((f1g2 + f2g1)y + (1− x2)f1g1 + f2g2)

= (x2 − 1)(f1g2 + f2g1)
2 + ((1− x2)f1g1 + f2g2)

2

= (x2 − 1)((f1g2)
2 + (f2g1)

2 + 2f1f2g1g2 + (f1g1)
2(x2 − 1)

− 2f1f2g1g2) + (f2g2)
2

= N(f1(x)y + f2(x))N(g1(x)y + g2(x))

So N is multiplicative.

We have in A, y2 = 1 − x2 = (1 − x)(1 + x). If y|(1 − x) in A, then as N is multiplicative
x2−1 = N(y)|N(1−x) = (1−x)2 in R[x] which is not true so y - (1−x). Likewise y - (1+x),
(1− x) - y and (1 + x) - y.
Let us prove moreover that y ∈ A is irreducible: assume y = fg, then x2 − 1 = N(f)N(g) in
R[x]. If deg(N(f)) = 2 then N(g) ∈ R∗ i.e. there is a a ∈ R∗ such that g = a in A i.e. g is in-
vertible. Likewise if deg(N(g)) = 2, f is invertible. If deg(N(f)) = 1 = deg(N(g)), then (R[x]
is factorial) N(f), N(g) ∈ {x−1, x+1}. Assume N(f) = x+1 and write f = f1y+f2; we have
(x2−1)f21 +f22 = N(f) = x+1 in R[x]; thus x+1|f22 i.e. x+1|f2 (since x+1 is irreducible) so
either deg(f22 ) ≥ 4 and its leading coefficient is positive or f2 = 0. But the leading coefficient
of (x2 − 1)f21 is also positive. But the sum (x2 − 1)f21 + f22 has degree 1 = deg(x+ 1) which
is not possible. Using similar arguments for the case N(f) = x−1, we get that y is irreducible.

Thus y2 = (1−x)(x+1) gives two distinct (with distinct irreducible elements) decompositions
of y2; in particular A is not factorial.

Exercise 42. (Extending ring homomorphisms into fields, 3 points)
Since (0) ∈ Spec(K), the ideal p := ker(f) = f−1(0) is prime; thus A/p is integral,
f : A/p→ K is injective and f factorizes through f .
Since A ↪→ B is integral, by the Going-up theorem (Thm 11.33), Spec(B) � Spec(A) is sur-
jective so that there is a q ∈ Spec(B) such that q∩A = p. Now the kernel of the composition
A ↪→ B → B/q is q∩A = p so there is an induced injective ring homomorphism A/p ↪→ B/q
which, by the first step of the proof of the Going-up theorem, is integral.
Of course, B/q is integral so we can look at the natural injection B/q ↪→ Q(B/q). We have an
induced injection A/p ↪→ B/q ↪→ Q(B/q) which, by the universal property of the localization
(or of the fraction field) factorizes through A/p ↪→ Q(A/p). Let us prove that the field exten-
sion Q(B/q)/Q(A/p) is algebraic: Let b

d ∈ Q(B/q) then as B/q is integral over A/p, A/p[d]
is a finite A/p-module, hence Q(A/p)[d] ⊂ Q(B/q) is a finite dimensional vector space. So
d ∈ Q(B/q) is algebraic over Q(A/p); thus d−1 ∈ Q(A/p)[d] (mimic the proof of step 3 of the
proof of the Going-up theorem). Thus b

d ∈ Q(A/p)[b, d] = Q(A/p)[d][b] ⊂ Q(B/q) but since
b is integral over A/p it is in particular algebraic over Q(A/p), hence integral over Q(A/p)[d]
i.e. Q(A/p)[d][b] is a finite Q(A/p)[d][b]-module hence Q(A/p)[b, d] is a finite dimensional
Q(A/p)-vector space. As a consequence b

d ∈ Q(A/p)[b, d] is algebraic.

Now by the universal property of localization, the injective ring homomorphism f : A/p ↪→ K

factorizes through A/p ↪→ Q(A/p) so we get a field extension f : Q(A/p) ↪→ K. Since K is
algebraically closed and Q(B/q)/Q(A/p) is algebraic, by a classical result on field extension,

there is a filed extension g : Q(B/q) ↪→ K extending f .
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Thus we have a commutative diagram:

A //� _

��

A/p� _

��

� � // Q(A/p)� _

��

� � // K

B // B/q �
� // Q(B/q)

- 


;;

(where the the composition of the map in the first line is equal to f) which gives us the
extension.
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