
Solutions for exercises, Algebra I (Commutative Algebra) – Week 9

Exercise 43. (Noether normalization over rings, 3 points)
Notice that A, being a subring of an integral domain, is a integral domain.
By assumption there is a surjective homomorphism of A-algebras: f : A[x1, . . . , xn] � B. We
can localize f with respect to the multiplicative set S = A\{0} (i.e. tensor with Q(A)) to get
a surjective homomorphism of Q(A) algebras: S−1(f) : Q(A)[x1, . . . , xn] � S−1B. In particu-
lar, S−1B is a Q(A)-algebra of finite type. Thus by Noether normalization theorem there are
b1, . . . , bk ∈ S−1B such that the homomorphism of Q(A)-algebras g : Q(A)[X1, . . . , Xk] →
S−1B, Xi 7→ bi

ai
gives an isomorphism Q(A)[X1, . . . , Xk] ' Q(A)[ b1a1 , . . . ,

bk
ak

] and S−1B is a

finite Q(A)[ b1a1 , . . . ,
bk
ak

]-module. In particular S−1B is integral over Q(A)[ b1a1 , . . . ,
bk
ak

].

Set ci = f(xi) for i = 1, . . . , n. As S−1B is integral over Q(A)[ b1a1 , . . . ,
bk
ak

], for any i, ci
1 ∈ S

−1B

is annihilated by a (monic) polynomial Pci ∈ Q(A)[ b1a1 , . . . ,
bk
ak

][x]. If 0 6= a ∈ A is the pro-

duct of (a1 · · · ak)d (where d = maxi(deg(Pci))) by the product of all the denominators of
the coefficients of the Pi’s, we have that 0 6= aPci ∈ A[b1, . . . , bk][x] and aPci(ci) = 0.
Then Pci ∈ Aa[b1, . . . , bk][x] for any i i.e. ci is integral over Aa[b1, . . . , bk] for any i i.e.
Aa[b1, . . . , bk][c1, . . . , cn] is a finite Aa[b1, . . . , bk]-module. Tensoring f with Aa, we see that
Aa[c1, . . . , cn] = B ⊗A Aa ' Ba; a fortiori Aa[b1, . . . , bk][c1, . . . , cn] ' Ba. Thus Ba is in-

tegral over Aa[b1, . . . , bk] and since b1
a1
, . . . , bkak were algebraically independent over Q(A),

b1, . . . , bk are algebraically independent over A (indeed, because A is an integral domain,

ker(A[X1, . . . , Xk]→ A[b1, . . . , bk]) ↪→ ker(Q(A)[X1, . . . , Xk]→ Q(A)[ b1a1 , . . . ,
bk
ak

]) = {0}).

Exercise 44. (Finite type Z-algebras are Jacobson, 3 points)
Notice first that the quotient of a Jacobson ring is Jacobson: indeed the ideals of A/a corre-
spond exactly to the ideals of A containing a. So if q ∈ Spec(A/a) then p = qc ∈ V (a) can
be written p = ∩p(m∈MaxSpec(A)m; thus passing to the quotient we get q = ∩q(m∈MaxSpec(A)m
(since A/a/m/a ' A/m a field).

Assume first that B is integral over A and (A Jacobson). By the above observation, we can
assume that A ⊂ B with A Jacobson and B integral over A. Let q ∈ Spec(B) (not maximal)
and Spec(A) 3 p = qc = A ∩ q (not maximal neither by the 4th step of the proof of the
Going-up theorem). By hypothesis p = ∩p(m∈MaxSpec(A)m. Since B is integral over A, by the
Going-up theorem, for any p ⊂ m there is a q ⊂ n ∈ Spec(B) such that n ∩ A = m. By the
first step of the proof the Going-up theorem, B/n is integral over A/m; and by the third
step of the same proof, since A/m is a field, B/n is also a field i.e. such a n is maximal. Set
b = ∩n∈MaxSpec(B), q(n and p⊂n∩A∈MaxSpec(A)n = ∩n∈MaxSpec(B), q(nn (by the 4th-step of the
Going-up theorem n ∩A is maximal). We have q ⊂ b and b ∩A = ∩n∈MaxSpec(B), q⊂nn ∩A =

∩p(m∈MaxSpec(A)m = p = q∩A. We adapt the proof of the 5th step of the proof of the Going-up
to conclude that q = b = ∩n∈MaxSpec(B), q(nn. Thus B is Jacobson.

Let us prove this characterization of Jacobson ring: A is Jacobson if and only if for any prime
p ⊂ A for which there is a 0 6= a ∈ A/p such that (A/p)a is a field, then A/p is a field:
assume A is Jacobson. Then A/p is an integral domain which is Jacobson (first remark). If
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(A/p)a is a field we have (0) = Spec((A/p)a) = {q ∈ Spec(A/p), a /∈ q} so if A/p contains a
non-zero prime ideal we have a ∈ ∩(0)6=qq but since A/p is Jacobson (and an integral domain)
∩(0)6=qq = NA/p = (0) i.e. a = 0. Contradiction. So Spec(A/p) = (0) i.e. A/p is a field.
Conversely if p ∈ Spec(A), denote a = ∩p(m∈MaxSpec(A)m. If p ( a, pick a a ∈ a\p; let us
consider a prime ideal q which is maximal among those containing p and not containing a. By
definition of a, q is not a maximal ideal of A but {an, n ≥ 0}−1q is a maximal ideal of Aa. So
Aa/{an, n ≥ 0}−1q ' (A/q)a is a field. Thus A/q is a field i.e. q is maximal. Contradiction.
So p = a.

Let us prove that if A is Jacobson then any ring which is generated by one element as a
A-algebra (i.e. a quotient of A[x]) is also Jacobson: let C = A[x]/a be such a ring and let
p ∈ V (a) ⊂ Spec(A[x]), and consider the quotient homomorphism f : C → C/p ' A[x]/p.
We must show that if 0 6= a ∈ A[x]/p is such that (A/p)a is a field then (A/p) is also a field.
Let us denote B = f(A) ⊂ A[x]/p. By the first remark B is Jacobson and an integral domain
(as subring of an integral domain) so ∩m∈MaxSpec(B)m = (0). Look at B[x] � A[x]/p (x 7→ x).
If it is an isomorphism, and if 0 6= a ∈ A[x]/p is such that (A/p)a is a field, then B[x]a is a
field. But then Q(B)[x]a is also a field. But looking at the description of the prime ideals of
the principal ideal domain Q(B)[x] we see that it is Jacobson; thus the fact that Q(B)[x]a is
a field implies that Q(B)[x] is a field. Contradiction. So B[x] � A[x]/p is not an isomorphism
and A[x]/p ' B[x]/q for a non-zero prime ideal (q = ker(B[x] � A[x]/p) and A[x]/p is an
integral domain). If 0 6= a ∈ B[x]/q is such that (B[x]/q)a is a field.
If g ∈ q is a non-zero polynomial with leading coefficient d ∈ B, then x is integral over
Bd. So B[x]/q is integral over Bd. In particular as a ∈ B[x]/q, there is a monic polynomial
h = yn + h1y

n−1 + · · ·+ hn−1 ∈ Bd[y] (with h(0) 6= 0 because B is an integral domain) such

that h(a) = 0. So dividing by hn−1a
n we find a−n + hn−2

hn−1
a−(n−1) + · · ·+ 1

hn−1
= 0 i.e. a−1 is

integral over Bhn−1d. So (B[x]/q)a is integral over Bhn−1d. By the 3rd step of the proof of the
Going-up theorem, Bhn−1d is also a field. But since B is Jacobson, (and (0) is prime) B is a
field. In particular B = Bhn−1d. So B[x]/q ⊂ (B[x]/q)a (since B[x]/q is an integral domain)
is integral over the field B. Again by the 3rd step of the proof of the Going-up theorem,
B[x]/q is a field. So B[x]/q ' A[x]/p is Jacobson. In particular (0) = ∩m∈MaxSpec(A[x]/p)m i.e.
p/a = ∩p/a⊂m∈MaxSpec(C)m.

For an A-algebra generated by finitely many elements, we proceed by induction.

Exercise 45. (Finite fields, 3 points)
Assume k is a field which is a finitely generated Z-algebra. If the natural homomorphism is
injective Z ↪→ k then by the universal property of localization with have a field extension
Q ↪→ k and k is a fortiori a Q-algebra of finite type. By Noether normalization, there are a
` ≥ 0 and an injective homomorphism Q[x1, . . . x`] ↪→ k such that k is a finite Q[x1, . . . , x`].
By Corollary 11.11 k is integral over Q[x1, . . . , x`]. By the 3rd step of the proof of the Going-
up theorem Q[x1, . . . , x`] is a field i.e. ` = 0. Thus k is a finite field extension of Q (i.e. a
number field).
Let us prove that a number field cannot be a finitely generated Z-algebra: let f : Z[x1, . . . , xn]→
k be a ring homomorphism and let us denote αi = f(xi) ∈ k. Let ` ∈ Z>0 be the product of
all the denominators of the minimal polynomials of αi over Q. Then the minimal polynomials
of the αi’s are in Z`[x] i.e. k is integral over Z`. So by the 3rd step of the proof of the Going-
up theorem Z` is a field; which is impossible (any prime not dividing ` is not invertible in Z`).

So the homomorphism Z→ k is not injective; thus there is a prime number p > 0, such that
the homomorphism factors through Fp. So k is in particular a Fp-algebra of finite type. By
Noether normalization k is a finite module over a polynomial ring over Fp, in particular it is

integral over a polynomial ring. Again by the 3rd step of the proof of the Going-up theorem,
k is a finite field extension of Fp i.e. a finite field.
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Exercise 46. (Family of polynomials without common zeros, 3 points)

Using Remark 12.11: since Z((f1, . . . , fk)) = ∅ we have
√

(f1, . . . , fk) = I(Z((f1, . . . , fk))) =

C[x1, . . . , xn]. So 1 ∈
√

(f1, . . . , fk) i.e. 1n = 1 ∈ (f1, . . . , fk)⊗ C.
If (f1, . . . , fk) = Z[x1, . . . , xn] we are done. So we can assume that (f1, . . . , fk) ( Z[x1, . . . , xn]
there is a maximal ideal (f1, . . . , fk) ⊂ m containing it. We have an exact sequence:

0→ m→ Z[x1, . . . , xn]→ k → 0

where k is the quotient field. The sequence also shows that k is finitely generated Z-algebra
hence, by the previous exercise, k is a finite field, of characteristic, say p > 0.
Since C is a flat Z-algebra (we have seen that Q is a Z-algebra and C is a Q-vector space
(i.e. a free Q-module)), we have C[x1, . . . , xn] = (f1, . . . , fk) ⊗ C ⊂ m ⊗ C. So we get
(f1, . . . , fk)⊗Q = m⊗Q thus any element of m/(f1, . . . , fk) is annihilated by an integers.

Now, p ∈ Z[x1, . . . , xn] is sent to 0 in k i.e. p ∈ m. As m/(f1, . . . , fk) is torsion, there is a
d ∈ Z\{0}, such that 0 6= dp ∈ (f1, . . . , fk); which proves the result.

The result does not hold if C is replaced by R: for example x2 + 1 ∈ Z[x] has no real zero but
the principal ideal (x2 + 1) does not contain a non-zero integer (for degree reason).

Exercise 47. (Noether normalization via linear projections, 4 points)
We notice that when x is fixed x = a, the system of equations y − z2 = 0; az − y2 = 0
transforms into y − z2 = 0; (a − z3)z = 0 which admits finitely many solutions. So let us
consider the projection on the x-axis.
Let us denote A = k[x, y, z]/a and consider the composition f : k[x] → A of the inclusion
k[x] ↪→ k[x, y, z] and the canonical projection k[x, y, z] � k[x, y, z]/a.
If P ∈ ker(f) then P ∈ (y − z2, xz − y2) i.e. P = (y − z2)p(x, y, z) + (xz − y2)q(x, y, z) for
some p, q ∈ k[x, y, z]. But looking at y = 0 = z we get P = 0 i.e. f is injective.
We claim that 1, z, z2, z3 generate A as a k[x]-module: because of the surjection k[x][y, z] � A,
y, z generate A as a k[x]-algebra. In A, y = z2 thus z generates A as a k[x]-algebra. Moreover
z4 = xz in A; thus any polynomial p ∈ k[x, y, z] is in the class modulo a of a polynomial
whose monomials are of the form xkzi, k ∈ N, i ∈ {0, 1, 2, 3}; which proves the claim.
So A is a finite k[x]-algebra and as such it is integral over k[x] (Corollary 11.11). So by the
Going-up theorem (Theorem 11.33), ϕ : Spec(A) = V (a)→ Spec(k[x]) = A1

k is surjective and
by Remark 11.35 (i) it is closed (alternatively remark that ϕ has the going-up property by
going-up theorem and since A is Noetherian (as quotient of the Noetherian ring k[x, y, z]),
Exercise 38 yields that ϕ is closed).
For p ∈ Spec(k[x]), we have seen in (the solution of) Exercise 37 (ii) that the fiber ϕ−1(p)
of ϕ over p is isomorphic to Spec(A ⊗k[x] Q(k[x]/p)). Since A is a finite k[x]-module (i.e.

there is a surjective homomorphism of k[x]-modules k[x]4 � A), A ⊗ Q(k[x]/p) is a finite
Q(k[x]/p)-algebra in particular A⊗Q(k[x]/p) is a finite-dimensional Q(k[x]/p)-vector space.

Any prime ideal of A ⊗ Q(k[x]/p) is maximal: a prime ideal q ∈ Spec(A ⊗ Q(k[x]/p)) is
in particular a Q(k[x]/p)-vector subspace of A ⊗ Q(k[x]/p) so the integral domain B =
A ⊗ Q(k[x]/p)/q is also a finite-dimensional Q(k[x]/p)-vector space (as quotient of finite-
dimensional vector space). Now take x ∈ B\{0} and consider the Q(k[x]/p)-linear map
mx : B → B, b 7→ bx. Since B is an integral domain, mx is injective and since B is finite-
dimensional, the linear map mx is also surjective. In particular 1 ∈ im(mx) i.e. there is a
y ∈ B such that yx = 1 i.e. x is a unit. So B is a field i.e. q is maximal.

As A⊗Q(k[x]/p) is a finite-dimensionalQ(k[x]/p)-vector space (and ideals of A⊗Q(k[x]/p) are
in particular Q(k[x]/p)-vector subspaces), A⊗Q(k[x]/p) is Noetherian. So as seen in (solution
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for Exercise 38) Spec(A⊗Q(k[x]/p)) can be written as a finite union Spec(A⊗Q(k[x]/p)) =
∪ni=1V (qi) where qi ∈ Spec(A⊗Q(k[x]/p)). Since any prime ideal in A⊗Q(k[x]/p) is maximal
we get Spec(A⊗Q(k[x]/p)) = {q1, . . . , qn} i.e. any fiber of ϕ is finite.

Exercise 48. (Valuation rings, 3 points)

1. Since A is a subring of a field, it is an integral domain and since A ⊂ K the universal
property of localization gives the inclusions A ⊂ Q(A) ⊂ K. Now let a ∈ K ⊂ L; then
either a ∈ B, in which case a ∈ B∩K = A, or a−1 ∈ B, in which case a−1 ∈ B∩K = A.
Since Q(A) ⊂ K, this proves that the same property holds for Q(A) i.e. that A is a
valuation ring. It also proves that Q(A) ⊂ K is surjective (hence an isomorphism) since
if a ∈ K\A then a−1 ∈ A; so a = (a−1)−1 ∈ Q(A).

2. Assume A is a field and L/K is algebraic. By the first question we get A = Q(A) = K.
In particular K ⊂ B. Let b ∈ B; as b−1 ∈ L is algebraic over K, take f(x) = xn +
a1x

n−1+· · ·+an−1 ∈ K[x]\{0} such that f(b−1) = 0. Taking the product of the equality

b−n = −(a1b
−(n−1) + · · ·+an−1) ∈ L by bn−1, we get b−1 = −(a1 +a2b+ · · ·+an−1b

n−1)
i.e. (K ⊂ B) b−1 ∈ B. Therefore B is a field.
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