Übungen zur Algebraischen Geometrie

Blatt 3, Abgabe am 09.11.2005

Aufgabe 9

Sei X ein topologischer Raum, und sei $\varphi \colon \mathcal{F} \longrightarrow \mathcal{G}$ ein Morphismus von Garben abelscher Gruppen auf X.

- a) Zeige, dass die Zuordnung $U \mapsto \ker(\mathcal{F}(U) \longrightarrow \mathcal{G}(U)), U \subseteq X$ offen, in natürlicher Weise eine Garbe definiert.
- b) Zeige, dass die Zuordnung $U \mapsto \operatorname{im}(\mathcal{F}(U) \longrightarrow \mathcal{G}(U)), U \subseteq X$ offen, in natürlicher Weise eine Prägarbe definiert. Gib ein Beispiel an, in dem diese Prägarbe keine Garbe ist.

Aufgabe 10

Sei X ein topologischer Raum und sei $\varphi \colon \mathcal{F} \longrightarrow \mathcal{G}$ ein Morphismus von Garben auf X. Zeige: Der Morphismus φ ist genau dann ein Isomorphismus, wenn für alle $x \in X$ die auf den Halmen induzierte Abbildung $\varphi_x \colon \mathcal{F}_x \longrightarrow \mathcal{G}_x$ ein Isomorphismus ist.

Aufgabe 11

Sei X ein topologischer Raum, und sei \mathcal{B} eine Basis der Topologie auf X (d. h. \mathcal{B} ist eine Menge von offenen Teilmengen von X, und jede offene Teilmenge von X lässt sich als Vereinigung von Mengen aus \mathcal{B} schreiben).

Für jedes $U \in \mathcal{B}$ sei eine Menge $\mathcal{F}(U)$, und für $V \subseteq U$, $V, U \in \mathcal{B}$ seien Restriktionsabbildungen $r_U^V \colon \mathcal{F}(U) \longrightarrow \mathcal{F}(V)$ mit $r_U^U = \mathrm{id}_U$, $r_V^W \circ r_U^V = r_U^W$ für $W \subseteq V \subseteq U$, $U, V, W \in \mathcal{B}$ gegeben. Dabei seien die Garbenaxiome für Familien $(U_i)_i$ von Mengen $U_i \in \mathcal{B}$ mit $\bigcup_i U_i \in \mathcal{B}$ erfüllt.

Zeige: Es gibt eine eindeutig bestimmte Garbe \mathcal{G} auf X, so dass für alle Mengen $U \in \mathcal{B}$ gilt: $\mathcal{G}(U) = \mathcal{F}(U)$, und so dass die Restriktionsabbildungen von \mathcal{G} für $V \subseteq U$, $V, U \in \mathcal{B}$, mit denen von \mathcal{F} übereinstimmen.

Hinweis: Wende die Konstruktion der zu einer Prägarbe assoziierten Garbe an.

Aufgabe 12

Wir betrachten $\mathbb C$ in der üblichen Weise als topologischen Raum. Sei $\mathcal O$ die Garbe abelscher Gruppen mit

$$\mathcal{O}(U) = \{ f : U \longrightarrow \mathbb{C}; f \text{ holomorph} \}, U \subseteq \mathbb{C} \text{ offen.}$$

Sei \mathcal{O}^{\times} die Garbe abelscher Gruppen (bzgl. der Multiplikation) mit

$$\mathcal{O}^\times(U)=\{f\colon U\longrightarrow\mathbb{C};\ f\text{ holomorph}, f(u)\neq 0\text{ für alle }u\in U\},\ U\subseteq\mathbb{C}\text{ offen}.$$

Wir bezeichnen mit exp: $\mathbb{C} \longrightarrow \mathbb{C}$ die Exponentialabbildung.

a) Zeige, dass die folgende Vorschrift einen Morphismus von Garben abelscher Gruppen definiert ($U\subseteq\mathbb{C}$ offen):

$$\mathcal{O}(U) \longrightarrow \mathcal{O}^{\times}(U), \quad f \mapsto \exp \circ f.$$

Wir bezeichnen diesen Morphismus wieder mit exp: $\mathcal{O} \longrightarrow \mathcal{O}^{\times}$.

- b) Zeige, dass für alle $z\in\mathbb{C}$ die auf den Halmen induzierte Abbildung surjektiv ist.
- c) Gib eine offene Teilmenge $U\subseteq\mathbb{C}$ an, so dass die Abbildung $\mathcal{O}(U)\longrightarrow\mathcal{O}^{\times}(U)$ nicht surjektiv ist.