Übungen zur Algebraischen Geometrie

Blatt 6, Abgabe am 15.05.2007

Aufgabe 21

Sei k ein algebraisch abgeschlossener Körper. Als Verallgemeinerung des projektiven Raums konstruieren wir die *Grassmann-Varietät*. Seien 0 < r < n ganze Zahlen. Sei e_1, \ldots, e_n die Standard-Basis von k^n . Als Menge sei

 $Grass_{r,n}(k) = \{U \subset k^n; U \text{ Untervektorraum der Dimension } r\}.$

Für $1 \le i_1 < \dots < i_r \le n$ sei

$$\mathscr{U}_{i_1...i_r} = \{ U \in \operatorname{Grass}_{r,n}(k); \ U \cap \langle e_i; \ i \notin \{i_1, \ldots, i_r\} \rangle = 0 \}.$$

Mit anderen Worten: in $\mathscr{U}_{i_1...i_r}$ sind genau diejenigen Untervektorräume enthalten, die eine Basis der Form $(a_{i1})_i, \ldots, (a_{ir})_i \in k^n$ mit $a_{i\nu j} = \delta_{\nu j}$ besitzen (man fasse die Basisvektoren als Spalten einer $(n \times r)$ -Matrix $A = (a_{ij})$ auf). Die r(n-r) Einträge a_{ij} mit $i \notin \{i_1, \ldots, i_r\}$ sind durch U eindeutig bestimmt, und wir erhalten so eine Bijektion $\mathscr{U}_{i_1...i_r} \cong \mathbb{A}^{r(n-r)}(k)$, mittels derer wir $\mathscr{U}_{i_1...i_r}$ als Prävarietät auffassen.

- a) Zeige, dass für Tupel $1 \leq i_1 < \cdots < i_r \leq n, \ 1 \leq j_1 < \cdots < j_r \leq n$ der Durchschnitt $\mathcal{U}_{i_1...i_r} \cap \mathcal{U}_{j_1...j_r}$ offen in $\mathcal{U}_{i_1...i_r}$ ist.
- b) Seien $1 \leq i_1 < \dots < i_r \leq n$, $1 \leq j_1 < \dots < j_r \leq n$, und sei $\mathscr{V} := \mathscr{U}_{i_1\dots i_r} \cap \mathscr{U}_{j_1\dots j_r}$, aufgefasst als offene Unterprävarietät von $\mathscr{U}_{i_1\dots i_r}$. Zeige, dass die Inklusion $\mathscr{V} \to \mathscr{U}_{j_1\dots j_r}$ ein Morphismus von Prävarietäten ist.
- c) Folgere, dass $\operatorname{Grass}_{r,n}(k)$ in eindeutiger Weise mit der Struktur einer Prävarietät versehen werden kann, für die alle $\mathscr{U}_{i_1...i_r}$ offene Unterprävarietäten sind. Diese Prävarietät heißt Grassmann-Varietät oder Grassmannsche.

Aufgabe 22

a) Sei A ein Ring, $S \subseteq A$ eine multiplikative Teilmenge, und sei $\varphi \colon A \longrightarrow S^{-1}A$ der kanonische Homomorphismus. Zeige, dass die zu φ assoziierte Abbildung $f \colon \operatorname{Spec} S^{-1}A \longrightarrow \operatorname{Spec} A, \mathfrak{P} \mapsto \varphi^{-1}(\mathfrak{P})$, einen Homömorphismus von Spec $S^{-1}A$ auf die Teilmenge $D(S) := \{\mathfrak{p} \in \operatorname{Spec} A; \mathfrak{p} \cap S = \emptyset\}$ von Spec A induziert. Gib ein Beispiel an, in dem D(S) nicht offen ist.

Sei nun $\varphi \colon A \longrightarrow B$ ein Ringhomomorphismus und sei $f \colon \operatorname{Spec} B \longrightarrow \operatorname{Spec} A$ die zugehörige Abbildung.

b) Sei $\mathfrak{b} \subseteq B$ ein Ideal. Zeige: $\overline{f(V(\mathfrak{b}))} = V(\varphi^{-1}(\mathfrak{b}))$.

- c) Sei φ surjektiv. Zeige, dass f einen Homö
omorphismus von Spec B auf $V(\ker \varphi)$ induziert.
- d) Zeige, dass das Bild von f genau dann dicht in Spec A ist, wenn jedes Element aus ker φ nilpotent ist.

Aufgabe 23

Sei X ein topologischer Raum, und sei $\varphi \colon \mathcal{F} \longrightarrow \mathcal{G}$ ein Morphismus von Garben abelscher Gruppen auf X.

a) Zeige, dass die Zuordnung $U \mapsto \operatorname{im}(\mathcal{F}(U) \longrightarrow \mathcal{G}(U)), U \subseteq X$ offen, in natürlicher Weise eine Prägarbe definiert.

Wir betrachten nun den topologischen Raum $\mathbb C$ mit der analytischen Topologie. Sei $\mathcal O$ die Garbe abelscher Gruppen mit

$$\mathcal{O}(U) = \{ f \colon U \longrightarrow \mathbb{C}; \ f \text{ holomorph} \}, \quad U \subseteq \mathbb{C} \text{ offen.}$$

Sei \mathcal{O}^{\times} die Garbe abelscher Gruppen (bzgl. der Multiplikation) mit

$$\mathcal{O}^{\times}(U) = \{f \colon U \longrightarrow \mathbb{C}; \ f \text{ holomorph}, f(u) \neq 0 \text{ für alle } u \in U\}, \ U \subseteq \mathbb{C} \text{ offen.}$$

Wir bezeichnen mit exp: $\mathbb{C} \longrightarrow \mathbb{C}$ die Exponentialabbildung.

b) Zeige, dass die folgende Vorschrift einen Morphismus von Garben abelscher Gruppen definiert $(U \subseteq \mathbb{C} \text{ offen})$:

$$\mathcal{O}(U) \longrightarrow \mathcal{O}^{\times}(U), \quad f \mapsto \exp \circ f.$$

Wir bezeichnen diesen Morphismus wieder mit exp: $\mathcal{O} \longrightarrow \mathcal{O}^{\times}$.

c) Zeige, dass für alle $z \in \mathbb{C}$ die auf den Halmen induzierte Abbildung surjektiv ist. Gib eine offene Teilmenge $U \subseteq \mathbb{C}$ an, so dass die Abbildung $\mathcal{O}(U) \longrightarrow \mathcal{O}^{\times}(U)$ nicht surjektiv ist. Folgere, dass die in b) definierte Bild-Prägarbe im Fall des Morphismus exp keine Garbe ist.

Aufgabe 24

Sei X ein topologischer Raum und sei $\varphi \colon \mathcal{F} \longrightarrow \mathcal{G}$ ein Morphismus von Garben auf X. Zeige: Der Morphismus φ ist genau dann ein Isomorphismus, wenn für alle $x \in X$ die auf den Halmen induzierte Abbildung $\varphi_x \colon \mathcal{F}_x \longrightarrow \mathcal{G}_x$ ein Isomorphismus ist.