Lineare Algebra I Weihnachtszettel 1

Aufgabe 1:

Sei K ein Körper und seien $A, B, C, D, X, Y, Z, W \in M_n(K)$. Betrachte die Blockmatrizen

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}, \begin{pmatrix} X & Y \\ Z & W \end{pmatrix} \in M_{2n}(K).$$

Ferner bezeichne $0 \in M_n(K)$ die Nullmatrix. Zeige:

(i) $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} X & Y \\ Z & W \end{pmatrix} = \begin{pmatrix} AX + BZ & AY + BW \\ CX + DZ & CY + DW \end{pmatrix}.$

(ii)
$$\det\begin{pmatrix} 0 & B \\ C & D \end{pmatrix} = (-1)^n \det(B) \det(C).$$

(iii) Sei nun eine der Matrizen A, B, C, D invertierbar. Zeige:

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{cases} \det(DA - CA^{-1}BA) & \text{falls } A \in \operatorname{GL}_n(K) \\ (-1)^n \det(CB - DB^{-1}AB) & \text{falls } B \in \operatorname{GL}_n(K) \\ (-1)^n \det(BC - AC^{-1}DC) & \text{falls } C \in \operatorname{GL}_n(K) \\ \det(AD - BD^{-1}CD) & \text{falls } D \in \operatorname{GL}_n(K) \end{cases}$$

(iv) Sei det $A = \det B = \det C = \det D = 0$. Folgt daraus, dass

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = 0 ?$$

Aufgabe 2:

Sei $G = \{E, F, I, J, K, L, M, N\}$ die 8-elementige Gruppe aus Aufgabe 3 von Blatt 10. Zeige, dass es keine zu G isomorphe Untergruppe von $GL_2(\mathbb{R})$ gibt.

Aufgabe 3: Sei K ein Körper, $A=(a_{ij})\in M_{m\times n}(K)$ eine Matrix und $0\leq r\leq \min(m,n)$. Eine Matrix $A'\in M_r(K)$ bezeichnet man als eine Teilmatrix von A, wenn es r-elementige Teilmengen $I\subset\{1,\ldots,m\}$ und $J\subset\{1,\ldots,n\}$ gibt mit $A'=(a_{ij})_{i\in I,j\in J}$.

Sei r maximal gewählt mit der Eigenschaft, dass es eine Teilmatrix $A' \in M_r(K)$ von A gibt mit det $A' \neq 0$. Zeige: rg A = r.

Aufgabe 4

Sei $A \in GL_n(\mathbb{Q})$ eine Matrix, deren Einträge ganze Zahlen sind. Zeige: Die Einträge von A^{-1} sind genau dann sämtlich ganze Zahlen, wenn det $A \in \{1, -1\}$.

 $^{^{1}\}mathrm{Dieses}$ Übungsblatt muss nicht abgegeben werden und wird nicht bepunktet.

Aufgabe 5: Sei $n \geq 2$. Eine Transposition $\tau \in S_n$ heißt elementar, falls $\tau = \tau_{i,i+1}$ für ein $i \in \{1, \ldots, n-1\}$. Für $\sigma \in S_n$ sei $\ell(\sigma)$ das Minimum aller $r \geq 0$, so dass sich σ in der Form $\sigma = \tau_1 \cdots \tau_r$ mit elementaren Transpositionen τ_i schreiben läßt. Sei

$$d(\sigma) = \sharp \{(i,j) \in \mathbb{N} \mid 1 \le i < j \le n, \ \sigma(i) > \sigma(j) \}.$$

- (i) Zeige, dass stets $\ell(\sigma) = d(\sigma)$ gilt.
 - (Hinweis: Zeige, dass $d(\tau\sigma) = d(\sigma) \pm 1$, wenn τ eine elementare Transposition ist und folgere $\ell(\sigma) \geq d(\sigma)$. Durch Induktion nach $d(\sigma)$ zeigt man dann $\ell(\sigma) \leq d(\sigma)$).
- (ii) Zeige, dass es ein eindeutig bestimmtes Element $w_0 \in S_n$ von maximaler Länge gibt (also $\ell(w_0) > \ell(\sigma)$ für alle $\sigma \neq w_0$) und bestimme $\ell(w_0)$.
- (iii) Sei $\mathcal{U}_{\sigma} \subset GL_n(K)$ die Untergruppe von Aufgabe 3 Blatt 9. Zeige, dass $\{A E \mid A \in \mathcal{U}_{\sigma}\} \subset M_n(K)$ ein Untervektorraum der Dimension $\ell(\sigma)$ ist. Hierbei bezeichnet $E \in M_n(K)$ die Einheitsmatrix.
- (iv) Folgere aus (i), die Gleichung

$$\det P_{\sigma} = \prod_{i < j} \frac{\sigma(j) - \sigma(i)}{j - i}.$$

(v) Formuliere die Aussage von (iv) mit Hilfe des Begriffes des Fehlstandes.

(Ein Paar $(i,j), 1 \le i < j \le n$ heißt Fehlstand der Permutation σ , falls $\sigma(i) > \sigma(j)$.)

Ein frohes Weihnachtsfest und alles Gute für das Jahr 2012!

Homepage: www.math.uni-bonn.de/people/hellmann/LA_I