Prof. Dr. M. Rapoport Dr. E. Hellmann

Sommersemester 2012

Nachklausur zur Vorlesung Lineare Algebra II 06.10.2012

Name, Vorname	
Tutor	
Matrikelnr.	
Semester	
E-mail	

Zugelassene Hilfsmittel: Papier, Stift.

Hinweise:

- (i) Bitte schreiben Sie mit Kugelschreiber oder Füller in blauer oder schwarzer Farbe.
- (ii) Bitte beginnen Sie für jede Aufgabe ein neues Blatt.
- (iii) Füllen Sie das Deckblatt bitte vollständig und lesbar aus.
- (iv) Benutzen Sie nur Sätze und Aussagen aus der Vorlesung oder von den Übungszetteln

Aufgabe	1	2	3	4	5	6	Σ
erreichbare Punkte	12	10	10	13	12	13	70
erreichte Punkte							

Note:

Aufgabe 1: (6+2+2+2Punkte)

(i) Bestimme die Jordansche Normalform der Matrix

$$A = \begin{pmatrix} 3 & -1 & 0 \\ 5 & -2 & -1 \\ -3 & 2 & 2 \end{pmatrix} \in M_3(\mathbb{C}).$$

Hinweis: Das charakteristische Polynom von A ist $\chi_A = (X-1)^3$.

(ii) Sei $f:\mathbb{C}^7 \to \mathbb{C}^7$ ein Endomorphismus mit

$$f^7 - 2f^5 + f^3 = 0$$

$$\operatorname{rg} f = \operatorname{rg}(f + \operatorname{id}) = 6$$

$$\operatorname{Spur} f = 0.$$

- (a) Bestimme das charakteristische Polynom von f
- (b) Bestimme alle Möglichkeiten für das Minimalpolynom μ_f von f.
- (c) Bestimme alle Möglichkeiten für die Jordansche Normalform von f.

Aufgabe 2: (10 Punkte)

Wende das Gram-Schmidt'sche Orthonormalisierungsverfahren auf die Basis

$$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 7 \end{pmatrix}$$

des euklidischen Vektorraums \mathbb{R}^3 mit dem Standard-Skalarprodukt an.

Aufgabe 3: (10 Punkte)

Sei $n \geq 1$ eine natürliche Zahl. Zeige, dass die symmetrischen Bilinearform auf \mathbb{R}^n , die bezüglich der Standardbasis durch die Matrix

$$A_n = \begin{pmatrix} 2 & 1 & & & & \\ 1 & 2 & 1 & & & & \\ & 1 & 2 & 1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & 2 & 1 \\ & & & & 1 & 2 \end{pmatrix}$$

beschrieben wird, positiv definit ist.

Aufgabe 4: (13 Punkte)

Sei K ein Körper und $f:V\to V$ ein nilpotenter Endomorphismus eines endlich-dimensionalen K-Vektorraums. Zeige, dass das Minimalpolynom μ_f und das charakteristische Polynom χ_f von f genau dann übereinstimmen, wenn für jede Faktorisierung $\chi_f(X)=p(X)q(X)$ mit $p(X),q(X)\in K[X]$ gilt:

$$\operatorname{Im} p(f) = \operatorname{Ker} q(f).$$

Aufgabe 5: (12 Punkte)

Sei V ein endlich-dimensionaler \mathbb{R} -Vektorraum und seien $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ und $(\cdot, \cdot) : V \times V \to \mathbb{R}$ zwei Skalarprodukte auf V, sodass für $v, w \in V$ gilt:

$$\langle v, w \rangle = 0 \iff (v, w) = 0.$$

Zeige, dass es ein $c \in \mathbb{R}_{>0}$ gibt, sodass $\langle \cdot, \cdot \rangle = c(\cdot, \cdot)$.

Aufgabe 6: (13 Punkte)

Sei K ein Körper der Charakteristik $\neq 2$ und sei (V, β) der hyperbolische Raum der Dimension 2m über K. Sei $U \subset V$ ein Unterraum der Dimension m+r mit $0 \leq r \leq m$.

- (i) Zeige, dass U einen isotropen Unterraum der Dimension r besitzt.
- (ii) Zeige, dass die Dimension eines maximal isotropen Unterraums von U genau r ist, falls die Einschränkung von β auf U^{\perp} keinen isotropen Vektor besitzt.