Exercises for **Topology I** Sheet 2

You can obtain up to 10 points per exercise (plus bonus points, where applicable).

Exercise 1. Let X be a CW-complex.

1. Consider the equivalence relation on the set X_0 of 0-cells generated by $x \sim y$ whenever x, y are *joined* by a 1-cell, i.e. whenever there exists a 1-cell e with $x, y \in \bar{e}$. Show that the map

$$\begin{array}{c} X_0/_{\sim} \longrightarrow \pi_0(X) \\ x \longmapsto [x] \end{array}$$

is well-defined and bijective.

2. Show that every path component of X is open in X. Conclude that X is the topological disjoint union (= coproduct) of its path components.

Exercise 2. Let X be a CW-complex with skeleta $X_k \subseteq X$, and let $x_0 \in X_0$.

- 1. Show that the map $\pi_1(X_k, x_0) \to \pi_1(X, x_0)$ induced by the inclusion is surjective for $k \ge 1$ and bijective for $k \ge 2$.
- 2. Give an example of a CW-complex X with a chosen basepoint $x_0 \in X_0$ such that $\pi_1(X_1, x_0) \rightarrow \pi_1(X, x_0)$ is not an isomorphism.
- 3. Determine the minimum number of cells in any CW-structure on the torus $S^1 \times S^1$.

Exercise 3. Describe a CW-structure on the real projective plane \mathbb{RP}^2 which contains a subcomplex homeomorphic to the *Möbius strip*

$$M \coloneqq ([0,1] \times [0,1]) /_{(0,t) \sim (1,1-t)}$$

Does there also exist a CW-structure on $\mathbb{R}P^2$ which contains a subcomplex homeomorphic to the *open Möbius* strip

$$M \coloneqq ([0,1] \times (0,1)) /_{(0,t) \sim (1,1-t)}?$$

Exercise 4. Let A be a topological space.

1. Let $\alpha, \beta \colon \partial D^n \rightrightarrows A$ be two homotopic maps. Show that the spaces

$$A \cup_{\alpha,\partial D^n} D^n$$
 and $A \cup_{\beta,\partial D^n} D^n$

are homotopy equivalent.

*2. (5 bonus points) Give an example of topological spaces A, X, a subspace $Y \subseteq X$, and homotopic maps $\alpha, \beta: Y \rightrightarrows A$ such that

 $A \cup_{\alpha, Y} X$ and $A \cup_{\beta, Y} X$

are not homotopy equivalent.