Organisatoren:
Prof. Dr. Andreas Eberle
Institut für Angewandte Mathematik
Universität Bonn
Wegelerstraße 6
53115 Bonn, Germany
|
Prof. Dr. Peter Eichelsbacher
Ruhr-Universität Bochum
Fakultät für Mathematik
44780 Bochum, Germany
|
Prof. Dr. Matthias Löwe
Westfälische Wilhemsuniversität
Institut für Mathematische Statistik
Einsteinstr. 62
48149 Münster, Germany
|
Markov
chain Monte
Carlo
methods, sequential Monte Carlo methods, and other related stochastic
algorithms have become widely used tools in many application fields of
mathematics. Despite their massive use, the theoretical understanding of
convergence properties of these algorithms is often rather rudimentary. This is
in particular the case in high dimensional models that typically arise in many
applications. Whereas formerly, research has often been carried out more or
less independently in probability theory, stochastic analysis, and statistical
mechanics on the one side, and theoretical computer science, discrete
mathematics, and numerical analysis on the other side, recently there is a
rapidly growing activity at the borderline of the different disciplines.
Besides classical probabilistic techniques (e.g. martingale methods), concepts
from statistical mechanics (phase transitions, critical slowing down), and
techniques from stochastic analysis (decay to equilibrium of Markov processes,
spectral gap estimates) as well as infinite dimensional analysis (e.g.
logarithmic Sobolev inequalities) have become
crucial.
Auszug zu diesem Minisymposium aus dem Programmheft (Stand: 15. Juli 2006).
Weitere nützliche Informationen rund um die Tagung können der verkürzten Ausgabe des Programmheftes entnommen werden.
Programm (Stand: 07.09.2006):